Do you want to publish a course? Click here

The Chebotarev-Gregoratti Hamiltonian as singular perturbation of a nonsemibounded operator

237   0   0.0 ( 0 )
 Added by John Gough
 Publication date 2008
  fields Physics
and research's language is English
 Authors John Gough




Ask ChatGPT about the research

We derive the Hamiltonian associated to a quantum stochastic flow by extending the Albeverio-Kurasov construction of self-adjoint extensions to finite rank perturbations of nonsemibounded operators to Fock space.



rate research

Read More

This work continues the study of the thermal Hamiltonian, initially proposed by J. M. Luttinger in 1964 as a model for the conduction of thermal currents in solids. The previous work [DL] contains a complete study of the free model in one spatial dimension along with a preliminary scattering result for convolution-type perturbations. This work complements the results obtained in [DL] by providing a detailed analysis of the perturbation theory for the one-dimensional thermal Hamiltonian. In more detail the following result are established: the regularity and decay properties for elements in the domain of the unperturbed thermal Hamiltonian; the determination of a class of self-adjoint and relatively compact perturbations of the thermal Hamiltonian; the proof of the existence and completeness of wave operators for a subclass of such potentials.
We study the pole structure of the $zeta$-function associated to the Hamiltonian $H$ of a quantum mechanical particle living in the half-line $mathbf{R}^+$, subject to the singular potential $g x^{-2}+x^2$. We show that $H$ admits nontrivial self-adjoint extensions (SAE) in a given range of values of the parameter $g$. The $zeta$-functions of these operators present poles which depend on $g$ and, in general, do not coincide with half an integer (they can even be irrational). The corresponding residues depend on the SAE considered.
We introduce a version of the Hamiltonian formalism based on the Clairaut equation theory, which allows us a self-consistent description of systems with degenerate (or singular) Lagrangian. A generalization of the Legendre transform to the case, when the Hessian is zero is done using the mixed (envelope/general) solutions of the multidimensional Clairaut equation. The corresponding system of equations of motion is equivalent to the initial Lagrange equations, but contains nondynamical momenta and unresolved velocities. This system is reduced to the physical phase space and presented in the Hamiltonian form by introducing a new (non-Lie) bracket.
We discuss a basis set developed to calculate perturbation coefficients in an expansion of the general N-body problem. This basis has two advantages. First, the basis is complete order-by-order for the perturbation series. Second, the number of independent basis tensors spanning the space for a given order does not scale with N, the number of particles, despite the generality of the problem. At first order, the number of basis tensors is 23 for all N although the problem at first order scales as N^6. The perturbation series is expanded in inverse powers of the spatial dimension. This results in a maximally symmetric configuration at lowest order which has a point group isomorphic with the symmetric group, S_N. The resulting perturbation series is order-by-order invariant under the N! operations of the S_N point group which is responsible for the slower than exponential growth of the basis. In this paper, we perform the first test of this formalism including the completeness of the basis through first order by comparing to an exactly solvable fully-interacting problem of N particles with a two-body harmonic interaction potential.
71 - A.L. Lisok , A.Yu. Trifonov , 2003
Based on the ideology of the Maslovs complex germ theory, a method has been developed for finding an exact solution of the Cauchy problem for a Hartree-type equation with a quadratic potential in the class of semiclassically concentrated functions. The nonlinear evolution operator has been obtained in explicit form in the class of semiclassically concentrated functions. Parametric families of symmetry operators have been found for the Hartree-type equation. With the help of symmetry operators, families of exact solutions of the equation have been constructed. Exact expressions are obtained for the quasi-energies and their respective states. The Aharonov-Anandan geometric phases are found in explicit form for the quasi-energy states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا