Do you want to publish a course? Click here

The evolution operator of the Hartree-type equation with a quadratic potential

72   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on the ideology of the Maslovs complex germ theory, a method has been developed for finding an exact solution of the Cauchy problem for a Hartree-type equation with a quadratic potential in the class of semiclassically concentrated functions. The nonlinear evolution operator has been obtained in explicit form in the class of semiclassically concentrated functions. Parametric families of symmetry operators have been found for the Hartree-type equation. With the help of symmetry operators, families of exact solutions of the equation have been constructed. Exact expressions are obtained for the quasi-energies and their respective states. The Aharonov-Anandan geometric phases are found in explicit form for the quasi-energy states.



rate research

Read More

A countable set of asymptotic space -- localized solutions is constructed by the complex germ method in the adiabatic approximation for 3D Hartree type equations with a quadratic potential. The asymptotic parameter is 1/T, where $Tgg1$ is the adiabatic evolution time. A generalization of the Berry phase of the linear Schrodinger equation is formulated for the Hartree type equation. For the solutions constructed, the Berry phases are found in explicit form.
59 - V.V. Belov 2000
The general construction of quasi-classically concentrated solutions to the Hartree-type equation, based on the complex WKB-Maslov method, is presented. The formal solutions of the Cauchy problem for this equation, asymptotic in small parameter h (hto0), are constructed with a power accuracy of O(h^{N/2}), where N is any natural number. In constructing the quasi-classically concentrated solutions, a set of Hamilton-Ehrenfest equations (equations for middle or centered moments) is essentially used. The nonlinear superposition principle has been formulated for the class of quasi-classically concentrated solutions of the Hartree-type equations. The results obtained are exemplified by the one-dimensional equation Hartree-type with a Gaussian potential.Comments: 6 pages, 4 figures, LaTeX Report no: Subj-class: Accelerator Physics
We study the spectrum of the linear operator $L = - partial_{theta} - epsilon partial_{theta} (sin theta partial_{theta})$ subject to the periodic boundary conditions on $theta in [-pi,pi]$. We prove that the operator is closed in $L^2([-pi,pi])$ with the domain in $H^1_{rm per}([-pi,pi])$ for $|epsilon| < 2$, its spectrum consists of an infinite sequence of isolated eigenvalues and the set of corresponding eigenfunctions is complete. By using numerical approximations of eigenvalues and eigenfunctions, we show that all eigenvalues are simple, located on the imaginary axis and the angle between two subsequent eigenfunctions tends to zero for larger eigenvalues. As a result, the complete set of linearly independent eigenfunctions does not form a basis in $H^1_{rm per}([-pi,pi])$.
119 - S. P. Flego 2020
Considering symmetric strictly convex potentials, a local relationship is inferred from the virial theorem, based on which a real log-concave function can be constructed. Using this as a weight function and in such a way that the virial theorem can still be verified, parameter-free ansatze for the eigenfunctions of the associated Schrodinger equation are built. To illustrate the process, the technique is successfully tested against the harmonic oscillator, in which it leads to the exact eigenfunctions, and against the quartic anharmonic oscillator, which is considered the paradigmatic testing ground for new approaches to the Schrodinger equation.
Quadratic matrix equations occur in a variety of applications. In this paper we introduce new permutationally invariant functions of two solvents of the n quadratic matrix equation X^2- L1X - L0 = 0, playing the role of the two elementary symmetric functions of the two roots of a quadratic scalar equation. Our results rely on the connection existing between the QME and the theory of linear second order difference equations with noncommutative coefficients. An application of our results to a simple physical problem is briefly discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا