No Arabic abstract
Let C be a uniform clutter, i.e., all the edges of C have the same size, and let A be the incidence matrix of C. We denote the column vectors of A by v1,...,vq. The vertex covering number of C, denoted by g, is the smallest number of vertices in any minimal vertex cover of C. Under certain conditions we prove that C is vertex critical. If C satisfies the max-flow min-cut property, we prove that A diagonalizes over the integers to an identity matrix and that v1,...,vq is a Hilbert basis. It is shown that if C has a perfect matching such that C has the packing property and g=2, then A diagonalizes over the integers to an identity matrix. If A is a balanced matrix we prove that any regular triangulation of the cone generated by v1,...,vq is unimodular. Some examples are presented to show that our results only hold for uniform clutters. These results are closely related to certain algebraic properties, such as the normality or torsion freeness, of blowup algebras of edge ideals and to finitely generated abelian groups. They are also related to the theory of Grobner bases of toric ideals and to Ehrhart rings.
Let C be a uniform clutter and let I=I(C) be its edge ideal. We prove that if C satisfies the packing property (resp. max-flow min-cut property), then there is a uniform Cohen-Macaulay clutter C1 satisfying the packing property (resp. max-flow min-cut property) such that C is a minor of C1. For arbitrary edge ideals of clutters we prove that the normality property is closed under parallelizations. Then we show some applications to edge ideals and clutters which are related to a conjecture of Conforti and Cornuejols and to max-flow min-cut problems.
Let $I(G)$ be the edge ideal of a simple graph $G$. In this paper, we will give sufficient and necessary combinatorial conditions of $G$ in which the second symbolic and ordinary power of its edge ideal are Cohen-Macaulay (resp. Buchsbaum, generalized Cohen-Macaulay). As an application of our results, we will classify all bipartite graphs in which the second (symbolic) powers are Cohen-Macaulay (resp. Buchsbaum, generalized Cohen-Macaulay).
We give upper bounds for the Stanley depth of edge ideals of certain k-partite clutters. In particular, we generalize a result of Ishaq about the Stanley depth of the edge ideal of a complete bipartite graph. A result of Pournaki, Seyed Fakhari and Yassemi implies that the Stanleys conjecture holds for d-uniform complete d-partite clutters. Here we give a shorter and different proof of this fact.
Squarefree powers of edge ideals are intimately related to matchings of the underlying graph. In this paper we give bounds for the regularity of squarefree powers of edge ideals, and we consider the question of when such powers are linearly related or have linear resolution. We also consider the so-called squarefree Ratliff property.
Let $G$ be a finite simple graph on the vertex set $V(G) = {x_1, ldots, x_n}$ and $I(G) subset K[V(G)]$ its edge ideal, where $K[V(G)]$ is the polynomial ring in $x_1, ldots, x_n$ over a field $K$ with each ${rm deg} x_i = 1$ and where $I(G)$ is generated by those squarefree quadratic monomials $x_ix_j$ for which ${x_i, x_j}$ is an edge of $G$. In the present paper, given integers $1 leq a leq r$ and $s geq 1$, the existence of a finite connected simple graph $G = G(a, r, d)$ with ${rm im}(G) = a$, ${rm reg}(R/I(G)) = r$ and ${rm deg} h_{K[V(G)]/I(G)} (lambda) = s$, where ${rm im}(G)$ is the induced matching number of $G$ and where $h_{K[V(G)]/I(G)} (lambda)$ is the $h$-polynomial of $K[V(G)]/I(G)$.