Do you want to publish a course? Click here

Cooperation and the Emergence of Role Differentiation in the Dynamics of Social Networks

147   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

By means of extensive computer simulations, the authors consider the entangled coevolution of actions and social structure in a new version of a spatial Prisoners Dilemma model that naturally gives way to a process of social differentiation. Diverse social roles emerge from the dynamics of the system: leaders are individuals getting a large payoff who are imitated by a considerable fraction of the population, conformists are unsatisfied cooperative agents that keep cooperating, and exploiters are defectors with a payoff larger than the average one obtained by cooperators. The dynamics generate a social network that can have the topology of a small world network. The network has a strong hierarchical structure in which the leaders play an essential role in sustaining a highly cooperative stable regime. But disruptions affecting leaders produce social crises described as dynamical cascades that propagate through the network.



rate research

Read More

We study the evolutionary Prisoners Dilemma on two social networks obtained from actual relational data. We find very different cooperation levels on each of them that can not be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding perfect agreement with the observations in the real networks. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.
Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. Previous studies proposed a strategy updating mechanism, which successfully demonstrated that the scale-free network can provide a framework for the emergence of cooperation. Instead, individuals in random graphs and small-world networks do not favor cooperation under this updating rule. However, a recent empirical result shows the heterogeneous networks do not promote cooperation when humans play a Prisoners Dilemma. In this paper, we propose a strategy updating rule with payoff memory. We observe that the random graphs and small-world networks can provide even better frameworks for cooperation than the scale-free networks in this scenario. Our observations suggest that the degree heterogeneity may be neither a sufficient condition nor a necessary condition for the widespread cooperation in complex networks. Also, the topological structures are not sufficed to determine the level of cooperation in complex networks.
The interactions among human beings represent the backbone of our societies. How people interact, establish new connections, and allocate their activities among these links can reveal a lot of our social organization. Despite focused attention by very diverse scientific communities, we still lack a first-principles modeling framework able to account for the birth and evolution of social networks. Here, we tackle this problem by looking at social interactions as a way to explore a very peculiar space, namely the adjacent possible space, i.e., the set of individuals we can meet at any given point in time during our lifetime. We leverage on a recent mathematical formalization of the adjacent possible space to propose a first-principles theory of social exploration based on simple microscopic rules defining how people get in touch and interact. The new theory predicts both microscopic and macroscopic features of social networks. The most striking feature captured on the microscopic side is the probability for an individual, with already $k$ connections, to acquire a new acquaintance. On the macroscopic side, the model reproduces the main static and dynamic features of social networks: the broad distribution of degree and activities, the average clustering coefficient and the innovation rate at the global and local level. The theory is born out in three diverse real-world social networks: the network of mentions between Twitter users, the network of co-authorship of the American Physical Society and a mobile-phone-call network.
We have two main aims in this paper. First we use theories of disease spreading on networks to look at the COVID-19 epidemic on the basis of individual contacts -- these give rise to predictions which are often rather different from the homogeneous mixing approaches usually used. Our second aim is to look at the role of social deprivation, again using networks as our basis, in the spread of this epidemic. We choose the city of Kolkata as a case study, but assert that the insights so obtained are applicable to a wide variety of urban environments which are densely populated and where social inequalities are rampant. Our predictions of hotspots are found to be in good agreement with those currently being identifed empirically as containment zones and provide a useful guide for identifying potential areas of concern.
An increasing number of todays social interactions occurs using online social media as communication channels. Some online social networks have become extremely popular in the last decade. They differ among themselves in the character of the service they provide to online users. For instance, Facebook can be seen mainly as a platform for keeping in touch with close friends and relatives, Twitter is used to propagate and receive news, LinkedIn facilitates the maintenance of professional contacts, Flickr gathers amateurs and professionals of photography, etc. Albeit different, all these online platforms share an ingredient that pervades all their applications. There exists an underlying social network that allows their users to keep in touch with each other and helps to engage them in common activities or interactions leading to a better fulfillment of the services purposes. This is the reason why these platforms share a good number of functionalities, e.g., personal communication channels, broadcasted status updates, easy one-step information sharing, news feeds exposing broadcasted content, etc. As a result, online social networks are an interesting field to study an online social behavior that seems to be generic among the different online services. Since at the bottom of these services lays a network of declared relations and the basic interactions in these platforms tend to be pairwise, a natural methodology for studying these systems is provided by network science. In this chapter we describe some of the results of research studies on the structure, dynamics and social activity in online social networks. We present them in the interdisciplinary context of network science, sociological studies and computer science.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا