No Arabic abstract
Imaging in clinical oncology trials provides a wealth of information that contributes to the drug development process, especially in early phase studies. This paper focuses on kinetic modeling in DCE-MRI, inspired by mixed-effects models that are frequently used in the analysis of clinical trials. Instead of summarizing each scanning session as a single kinetic parameter -- such as median $ktrans$ across all voxels in the tumor ROI -- we propose to analyze all voxel time courses from all scans and across all subjects simultaneously in a single model. The kinetic parameters from the usual non-linear regression model are decomposed into unique components associated with factors from the longitudinal study; e.g., treatment, patient and voxel effects. A Bayesian hierarchical model provides the framework in order to construct a data model, a parameter model, as well as prior distributions. The posterior distribution of the kinetic parameters is estimated using Markov chain Monte Carlo (MCMC) methods. Hypothesis testing at the study level for an overall treatment effect is straightforward and the patient- and voxel-level parameters capture random effects that provide additional information at various levels of resolution to allow a thorough evaluation of the clinical trial. The proposed method is validated with a breast cancer study, where the subjects were imaged before and after two cycles of chemotherapy, demonstrating the clinical potential of this method to longitudinal oncology studies.
Dynamic Contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) is an important tool for detecting subtle kinetic changes in cancerous tissue. Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with a nonlinear pharmacokinetic model of the contrast agent concentration. Parameters of the kinetic model are biologically meaningful, but the optimization of the non-linear model has significant computational issues. In practice, convergence of the optimization algorithm is not guaranteed and the accuracy of the model fitting may be compromised. To overcome this problems, this paper proposes a semi-parametric penalized spline smoothing approach, with which the AIF is convolved with a set of B-splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines). It has been shown that kinetic parameter estimation can be obtained from the resulting deconvolved response function, which also includes the onset of contrast enhancement. Detailed validation of the method, both with simulated and in vivo data, is provided.
When a latent shoeprint is discovered at a crime scene, forensic analysts inspect it for distinctive patterns of wear such as scratches and holes (known as accidentals) on the source shoes sole. If its accidentals correspond to those of a suspects shoe, the print can be used as forensic evidence to place the suspect at the crime scene. The strength of this evidence depends on the random match probability---the chance that a shoe chosen at random would match the crime scene prints accidentals. Evaluating random match probabilities requires an accurate model for the spatial distribution of accidentals on shoe soles. A recent report by the Presidents Council of Advisors in Science and Technology criticized existing models in the literature, calling for new empirically validated techniques. We respond to this request with a new spatial point process model for accidental locations, developed within a hierarchical Bayesian framework. We treat the tread pattern of each shoe as a covariate, allowing us to pool information across large heterogeneous databases of shoes. Existing models ignore this information; our results show that including it leads to significantly better model fit. We demonstrate this by fitting our model to one such database.
Studying the determinants of adverse pregnancy outcomes like stillbirth and preterm birth is of considerable interest in epidemiology. Understanding the role of both individual and community risk factors for these outcomes is crucial for planning appropriate clinical and public health interventions. With this goal, we develop geospatial mixed effects logistic regression models for adverse pregnancy outcomes. Our models account for both spatial autocorrelation and heterogeneity between neighborhoods. To mitigate the low incidence of stillbirth and preterm births in our data, we explore using class rebalancing techniques to improve predictive power. To assess the informative value of the covariates in our models, we use posterior distributions of their coefficients to gauge how well they can be distinguished from zero. As a case study, we model stillbirth and preterm birth in the city of Philadelphia, incorporating both patient-level data from electronic health records (EHR) data and publicly available neighborhood data at the census tract level. We find that patient-level features like self-identified race and ethnicity were highly informative for both outcomes. Neighborhood-level factors were also informative, with poverty important for stillbirth and crime important for preterm birth. Finally, we identify the neighborhoods in Philadelphia at highest risk of stillbirth and preterm birth.
Multi-parametric magnetic resonance imaging (mpMRI) plays an increasingly important role in the diagnosis of prostate cancer. Various computer-aided detection algorithms have been proposed for automated prostate cancer detection by combining information from various mpMRI data components. However, there exist other features of mpMRI, including the spatial correlation between voxels and between-patient heterogeneity in the mpMRI parameters, that have not been fully explored in the literature but could potentially improve cancer detection if leveraged appropriately. This paper proposes novel voxel-wise Bayesian classifiers for prostate cancer that account for the spatial correlation and between-patient heterogeneity in mpMRI. Modeling the spatial correlation is challenging due to the extreme high dimensionality of the data, and we consider three computationally efficient approaches using Nearest Neighbor Gaussian Process (NNGP), knot-based reduced-rank approximation, and a conditional autoregressive (CAR) model, respectively. The between-patient heterogeneity is accounted for by adding a subject-specific random intercept on the mpMRI parameter model. Simulation results show that properly modeling the spatial correlation and between-patient heterogeneity improves classification accuracy. Application to in vivo data illustrates that classification is improved by spatial modeling using NNGP and reduced-rank approximation but not the CAR model, while modeling the between-patient heterogeneity does not further improve our classifier. Among our proposed models, the NNGP-based model is recommended considering its robust classification accuracy and high computational efficiency.
We propose a hierarchical Bayesian model to estimate the proportional contribution of source populations to a newly founded colony. Samples are derived from the first generation offspring in the colony, but mating may occur preferentially among migrants from the same source population. Genotypes of the newly founded colony and source populations are used to estimate the mixture proportions, and the mixture proportions are related to environmental and demographic factors that might affect the colonizing process. We estimate an assortative mating coefficient, mixture proportions, and regression relationships between environmental factors and the mixture proportions in a single hierarchical model. The first-stage likelihood for genotypes in the newly founded colony is a mixture multinomial distribution reflecting the colonizing process. The environmental and demographic data are incorporated into the model through a hierarchical prior structure. A simulation study is conducted to investigate the performance of the model by using different levels of population divergence and number of genetic markers included in the analysis. We use Markov chain Monte Carlo (MCMC) simulation to conduct inference for the posterior distributions of model parameters. We apply the model to a data set derived from grey seals in the Orkney Islands, Scotland. We compare our model with a similar model previously used to analyze these data. The results from both the simulation and application to real data indicate that our model provides better estimates for the covariate effects.