Do you want to publish a course? Click here

Bayesian Spatial Models for Voxel-wise Prostate Cancer Classification Using Multi-parametric MRI Data

74   0   0.0 ( 0 )
 Added by Jin Jin
 Publication date 2020
and research's language is English
 Authors Jin Jin




Ask ChatGPT about the research

Multi-parametric magnetic resonance imaging (mpMRI) plays an increasingly important role in the diagnosis of prostate cancer. Various computer-aided detection algorithms have been proposed for automated prostate cancer detection by combining information from various mpMRI data components. However, there exist other features of mpMRI, including the spatial correlation between voxels and between-patient heterogeneity in the mpMRI parameters, that have not been fully explored in the literature but could potentially improve cancer detection if leveraged appropriately. This paper proposes novel voxel-wise Bayesian classifiers for prostate cancer that account for the spatial correlation and between-patient heterogeneity in mpMRI. Modeling the spatial correlation is challenging due to the extreme high dimensionality of the data, and we consider three computationally efficient approaches using Nearest Neighbor Gaussian Process (NNGP), knot-based reduced-rank approximation, and a conditional autoregressive (CAR) model, respectively. The between-patient heterogeneity is accounted for by adding a subject-specific random intercept on the mpMRI parameter model. Simulation results show that properly modeling the spatial correlation and between-patient heterogeneity improves classification accuracy. Application to in vivo data illustrates that classification is improved by spatial modeling using NNGP and reduced-rank approximation but not the CAR model, while modeling the between-patient heterogeneity does not further improve our classifier. Among our proposed models, the NNGP-based model is recommended considering its robust classification accuracy and high computational efficiency.



rate research

Read More

65 - Jin Jin 2020
While current research has shown the importance of Multi-parametric MRI (mpMRI) in diagnosing prostate cancer (PCa), further investigation is needed for how to incorporate the specific structures of the mpMRI data, such as the regional heterogeneity and between-voxel correlation within a subject. This paper proposes a machine learning-based method for improved voxel-wise PCa classification by taking into account the unique structures of the data. We propose a multi-resolution modeling approach to account for regional heterogeneity, where base learners trained locally at multiple resolutions are combined using the super learner, and account for between-voxel correlation by efficient spatial Gaussian kernel smoothing. The method is flexible in that the super learner framework allows implementation of any classifier as the base learner, and can be easily extended to classifying cancer into more sub-categories. We describe detailed classification algorithm for the binary PCa status, as well as the ordinal clinical significance of PCa for which a weighted likelihood approach is implemented to enhance the detection of the less prevalent cancer categories. We illustrate the advantages of the proposed approach over conventional modeling and machine learning approaches through simulations and application to in vivo data.
Environmental processes resolved at a sufficiently small scale in space and time will inevitably display non-stationary behavior. Such processes are both challenging to model and computationally expensive when the data size is large. Instead of modeling the global non-stationarity explicitly, local models can be applied to disjoint regions of the domain. The choice of the size of these regions is dictated by a bias-variance trade-off; large regions will have smaller variance and larger bias, whereas small regions will have higher variance and smaller bias. From both the modeling and computational point of view, small regions are preferable to better accommodate the non-stationarity. However, in practice, large regions are necessary to control the variance. We propose a novel Bayesian three-step approach that allows for smaller regions without compromising the increase of the variance that would follow. We are able to propagate the uncertainty from one step to the next without issues caused by reusing the data. The improvement in inference also results in improved prediction, as our simulated example shows. We illustrate this new approach on a data set of simulated high-resolution wind speed data over Saudi Arabia.
The aim of this paper is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. Our STMs include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov Random Field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder.
Generalized autoregressive moving average (GARMA) models are a class of models that was developed for extending the univariate Gaussian ARMA time series model to a flexible observation-driven model for non-Gaussian time series data. This work presents Bayesian approach for GARMA models with Poisson, binomial and negative binomial distributions. A simulation study was carried out to investigate the performance of Bayesian estimation and Bayesian model selection criteria. Also three real datasets were analysed using the Bayesian approach on GARMA models.
Imaging in clinical oncology trials provides a wealth of information that contributes to the drug development process, especially in early phase studies. This paper focuses on kinetic modeling in DCE-MRI, inspired by mixed-effects models that are frequently used in the analysis of clinical trials. Instead of summarizing each scanning session as a single kinetic parameter -- such as median $ktrans$ across all voxels in the tumor ROI -- we propose to analyze all voxel time courses from all scans and across all subjects simultaneously in a single model. The kinetic parameters from the usual non-linear regression model are decomposed into unique components associated with factors from the longitudinal study; e.g., treatment, patient and voxel effects. A Bayesian hierarchical model provides the framework in order to construct a data model, a parameter model, as well as prior distributions. The posterior distribution of the kinetic parameters is estimated using Markov chain Monte Carlo (MCMC) methods. Hypothesis testing at the study level for an overall treatment effect is straightforward and the patient- and voxel-level parameters capture random effects that provide additional information at various levels of resolution to allow a thorough evaluation of the clinical trial. The proposed method is validated with a breast cancer study, where the subjects were imaged before and after two cycles of chemotherapy, demonstrating the clinical potential of this method to longitudinal oncology studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا