No Arabic abstract
Old and recent theoretical works by Andrzej Pekalski (APE) are recalled as possible sources of interest for describing network formation and clustering in complex (scientific) communities, through self-organisation and percolation processes. Emphasis is placed on APE self-citation network over four decades. The method is that used for detecting scientists field mobility by focusing on authors self-citation, co-authorships and article topics networks as in [1,2]. It is shown that APEs self-citation patterns reveal important information on APE interest for research topics over time as well as APE engagement on different scientific topics and in different networks of collaboration. Its interesting complexity results from degrees of freedom and external fields leading to so called internal shock resistance. It is found that APE network of scientific interests belongs to independent clusters and occurs through rare or drastic events as in irreversible preferential attachment processes, similar to those found in usual mechanics and thermodynamics phase transitions.
Structural inequalities persist in society, conferring systematic advantages to some people at the expense of others, for example, by giving them substantially more influence and opportunities. Using bibliometric data about authors of scientific publications, we identify two types of structural inequalities in scientific citations. First, female authors, who represent a minority of researchers, receive less recognition for their work (through citations) relative to male authors; second, authors affiliated with top-ranked institutions, who are also a minority, receive substantially more recognition compared to other authors. We present a model for the growth of directed citation networks and show that citations disparities arise from individual preferences to cite authors from the same group (homophily), highly cited or active authors (preferential attachment), as well as the size of the group and how frequently new authors join. We analyze the model and show that its predictions align well with real-world observations. Our theoretical and empirical analysis also suggests potential strategies to mitigate structural inequalities in science. In particular, we find that merely increasing the minority group size does little to narrow the disparities. Instead, reducing the homophily of each group, frequently adding new authors to a research field while providing them an accessible platform among existing, established authors, together with balanced group sizes can have the largest impact on reducing inequality. Our work highlights additional complexities of mitigating structural disparities stemming from asymmetric relations (e.g., directed citations) compared to symmetric relations (e.g., collaborations).
The study of citation networks is of interest to the scientific community. However, the underlying mechanism driving individual citation behavior remains imperfectly understood, despite the recent proliferation of quantitative research methods. Traditional network models normally use graph theory to consider articles as nodes and citations as pairwise relationships between them. In this paper, we propose an alternative evolutionary model based on hypergraph theory in which one hyperedge can have an arbitrary number of nodes, combined with an aging effect to reflect the temporal dynamics of scientific citation behavior. Both theoretical approximate solution and simulation analysis of the model are developed and validated using two benchmark datasets from different disciplines, i.e. publications of the American Physical Society (APS) and the Digital Bibliography & Library Project (DBLP). Further analysis indicates that the attraction of early publications will decay exponentially. Moreover, the experimental results show that the aging effect indeed has a significant influence on the description of collective citation patterns. Shedding light on the complex dynamics driving these mechanisms facilitates the understanding of the laws governing scientific evolution and the quantitative evaluation of scientific outputs.
Unrolled neural networks emerged recently as an effective model for learning inverse maps appearing in image restoration tasks. However, their generalization risk (i.e., test mean-squared-error) and its link to network design and train sample size remains mysterious. Leveraging the Steins Unbiased Risk Estimator (SURE), this paper analyzes the generalization risk with its bias and variance components for recurrent unrolled networks. We particularly investigate the degrees-of-freedom (DOF) component of SURE, trace of the end-to-end network Jacobian, to quantify the prediction variance. We prove that DOF is well-approximated by the weighted textit{path sparsity} of the network under incoherence conditions on the trained weights. Empirically, we examine the SURE components as a function of train sample size for both recurrent and non-recurrent (with many more parameters) unrolled networks. Our key observations indicate that: 1) DOF increases with train sample size and converges to the generalization risk for both recurrent and non-recurrent schemes; 2) recurrent network converges significantly faster (with less train samples) compared with non-recurrent scheme, hence recurrence serves as a regularization for low sample size regimes.
We show that oscillations are excited in a complex system under the influence of the external force, if the parameters of the system experience rapid change due to the changes in its internal structure. This excitation is collision-like and does not require any phase coherence or periodicity. The change of the internal structure may be achieved by other means which may require much lower energy expenses. The mechanism suggests control over switching oscillations on and off and may be of practical use.
Whether a scientific paper is cited is related not only to the influence of its author(s) but also to the journal publishing it. Scientists, either proficient or tender, usually submit their most important work to prestigious journals which receives higher citations than the ordinary. How to model the role of scientific journals in citation dynamics is of great importance. In this paper we address this issue through two folds. One is the intrinsic heterogeneity of a paper determined by the impact factor of the journal publishing it. The other is the mechanism of a paper being cited which depends on its citations and prestige. We develop a model for citation networks via an intrinsic nodal weight function and an intuitive ageing mechanism. The nodes weight is drawn from the distribution of impact factors of journals and the ageing transition is a function of the citation and the prestige. The node-degree distribution of resulting networks shows nonuniversal scaling: the distribution decays exponentially for small degree and has a power-law tail for large degree, hence the dual behaviour. The higher the impact factor of the journal, the larger the tipping point and the smaller the power exponent that are obtained. With the increase of the journal rank, this phenomenon will fade and evolve to pure power laws.