No Arabic abstract
Numerical models indicate that collective animal behaviour may emerge from simple local rules of interaction among the individuals. However, very little is known about the nature of such interaction, so that models and theories mostly rely on aprioristic assumptions. By reconstructing the three-dimensional position of individual birds in airborne flocks of few thousands members, we prove that the interaction does not depend on the metric distance, as most current models and theories assume, but rather on the topological distance. In fact, we discover that each bird interacts on average with a fixed number of neighbours (six-seven), rather than with all neighbours within a fixed metric distance. We argue that a topological interaction is indispensable to maintain flocks cohesion against the large density changes caused by external perturbations, typically predation. We support this hypothesis by numerical simulations, showing that a topological interaction grants significantly higher cohesion of the aggregation compared to a standard metric one.
Evolution is the fundamental physical process that gives rise to biological phenomena. Yet it is widely treated as a subset of population genetics, and thus its scope is artificially limited. As a result, the key issues of how rapidly evolution occurs, and its coupling to ecology have not been satisfactorily addressed and formulated. The lack of widespread appreciation for, and understanding of, the evolutionary process has arguably retarded the development of biology as a science, with disastrous consequences for its applications to medicine, ecology and the global environment. This review focuses on evolution as a problem in non-equilibrium statistical mechanics, where the key dynamical modes are collective, as evidenced by the plethora of mobile genetic elements whose role in shaping evolution has been revealed by modern genomic surveys. We discuss how condensed matter physics concepts might provide a useful perspective in evolutionary biology, the conceptual failings of the modern evolutionary synthesis, the open-ended growth of complexity, and the quintessentially self-referential nature of evolutionary dynamics.
We propose a mathematical model for collective sensing in a population growing in a stochastically varying environment. In the population, individuals use an information channel for sensing the environment, and two channels for signal production and comprehension to communicate among themselves. We show that existence of such system has a positive effect on population growth, hence can have a positive evolutionary effect. We show that the gain in growth due to the collective sensing is related to information theoretic entities, which can be considered as the information content of this system from the environment. We further show that heterogeneity in communication resulted from network or spatial structure increases growth. We compute the growth rate of a population residing on a lattice and show that growth rate near the maximum noise level in observation or communication, increases exponentially as noise decreases. This exponential effect makes the emergence of collective observation an easy outcome in an evolutionary process. Furthermore, we are able to quantify interesting effects such as accelerated growth, and simplification of decision making due to information amplification by communication. Finally, we show that an amount of noise in representation formation has more disadvantageous effect compared to the same noise in signal production.
Video analysis is currently the main non-intrusive method for the study of collective behavior. However, 3D-to-2D projection leads to overlapping of observed objects. The situation is further complicated by the absence of stall shapes for the majority of living objects. Fortunately, living objects often possess a certain symmetry which was used as a basis for morphological fingerprinting. This technique allowed us to record forms of symmetrical objects in a pose-invariant way. When combined with image skeletonization, this gives a robust, nonlinear, optimization-free, and fast method for detection of overlapping objects, even without any rigid pattern. This novel method was verified on fish (European bass, Dicentrarchus labrax, and tiger barbs, Puntius tetrazona) swimming in a reasonably small tank, which forced them to exhibit a large variety of shapes. Compared with manual detection, the correct number of objects was determined for up to almost $90 %$ of overlaps, and the mean Dice-Sorensen coefficient was around $0.83$. This implies that this method is feasible in real-life applications such as toxicity testing.
This paper will introduce a theory of emergent animal social complexity using various results from computational models and empirical results. These results will be organized into a vertical model of social complexity. This will support the perspective that social complexity is in essence an emergent phenomenon while helping to answer two interrelated questions. The first of these involves how behavior is integrated at units of analysis larger than the individual organism. The second involves placing aggregate social events into the context of processes occurring within individual organisms over time (e.g. genomic and physiological processes). By using a complex systems perspective, five principles of social complexity can be identified. These principles suggest that lower-level mechanisms give rise to high-level mechanisms, ultimately resulting in metastable networks of social relations. These network structures then constrain lower-level phenomena ranging from transient, collective social groups to physiological regulatory mechanisms within individual organisms. In conclusion, the broader implications and drawbacks of applying the theory to a diversity of natural populations will be discussed.
Finding ways to overcome the temptation to exploit one another is still a challenge in behavioural sciences. In the framework of evolutionary game theory, punishing strategies are frequently used to promote cooperation in competitive environments. Here, we introduce altruistic punishers in the spatial public goods game. This strategy acts as a cooperator in the absence of defectors, otherwise it will punish all defectors in their vicinity while bearing a cost to do so. We observe three distinct behaviours in our model: i) in the absence of punishers, cooperators (who dont punish defectors) are driven to extinction by defectors for most parameter values; ii) clusters of punishers thrive by sharing the punishment costs when these are low iii) for higher punishment costs, punishers, when alone, are subject to exploitation but in the presence of cooperators can form a symbiotic spatial structure that benefits both. This last observation is our main finding since neither cooperation nor punishment alone can survive the defector strategy in this parameter region and the specificity of the symbiotic spatial configuration shows that lattice topology plays a central role in sustaining cooperation. Results were obtained by means of Monte Carlo simulations on a square lattice and subsequently confirmed by a pairwise comparison of different strategies payoffs in diverse group compositions, leading to a phase diagram of the possible states.