Do you want to publish a course? Click here

Chemical evolution of bulges at high redshift

172   0   0.0 ( 0 )
 Added by Antonio Pipino
 Publication date 2007
  fields Physics
and research's language is English
 Authors A.Pipino




Ask ChatGPT about the research

We present a new class of hydrodynamical models for the formation of bulges (either massive elliptical galaxies or classical bulges in spirals) in which we implement detailed prescriptions for the chemical evolution of H, He, O and Fe. Our results hint toward an outside-in formation in the context of the supernovae-driven wind scenario. The build-up of the chemical properties of the stellar populations inhabiting the galactic core is very fast. Therefore we predict a non significant evolution of both the mass-metallicity and the mass-[alpha/Fe] relations after the first 0.5 - 1 Gyr. In this framework we explain how the observed slopes, either positive or negative, in the radial gradient of the mean stellar [alpha/Fe], and their apparent lack of any correlation with all the other observables, can arise as a consequence of the interplay between star formation and metal-enhanced internal gas flows.



rate research

Read More

125 - Chip Kobulnicky 2004
I review the observational characteristics of intermediate-to-high redshift star forming galaxies, including their star formation rates, dust extinctions, ISM kinematics, and chemical compositions. I present evidence that the mean rate of metal enrichment, Delta{Z}/Delta{z}, from z=0--3, as determined from nebular oxygen abundance measurements in star forming galaxies, is 0.15 dex per redshift unit for galaxies more luminous than M_B=-20.5. This rate of chemical enrichment is consistent with the chemical rise in Galactic disk stars. It is less dramatic than, but perhaps consistent with, the enrichment rate of 0.18--0.26+/-0.07 dex per redshift unit seen in Damped Ly alpha systems, and it is much less than predicted by many cosmological evolution models. The high-redshift galaxies observed to date are the most luminous examples from those epochs, and thus, trace only the greatest cosmological overdensities. Star formation in the first 1-2 Gyr appears sufficient to elevate ambient metallicities to near or above the solar value, implying efficient production and retention of metals in these densest environments.
279 - Kenta Matsuoka 2009
We present new deep optical spectra of 9 high-z radio galaxies (HzRGs) at z > 2.7 obtained with FORS2 on VLT. These rest-frame ultraviolet spectra are used to infer the metallicity of the narrow-line regions (NLRs) in order to investigate the chemical evolution of galaxies in high-z universe. We focus mainly on the CIV/HeII and CIII]/CIV flux ratios that are sensitive to gas metallicity and ionization parameter. Although the NV emission has been widely used to infer the gas metallicity, it is often too weak to be measured accurately for NLRs. By combining our new spectra with data from the literature, we examine the possible redshift evolution of the NLR metallicity for 57 HzRGs at 1 < z < 4. Based on the comparison between the observed emission-line flux ratios and the results of our photoionization model calculations, we find no significant metallicity evolution in NLRs of HzRGs, up to z ~ 4. Our results imply that massive galaxies had almost completed their chemical evolution at much higher redshift (z > 5). Finally, although we detect strong NV emission lines in 5 HzRGs at z > 2.7, we point out that high NV/HeII ratios are not indicative of high metallicities but correspond to high ionization parameters of gas clouds in NLRs.
This chapter summarizes our current understanding of the stellar population properties of bulges and outlines important future research directions.
65 - D. Mehlert 2002
Using a sample of 57 VLT FORS spectra in the redshift range 1.37<z<3.40 (selected mainly from the FORS Deep Field survey) and a comparison sample with 36 IUE spectra of local (z ~ 0) starburst galaxies we derive CIV and SiIV equivalent width values and estimate metallicities of starburst galaxies as a function of redshift. Assuming that a calibration of the CIV equivalent widths in terms of the metallicity based on the local sample of starburst galaxies is applicable to high-z objects, we find a significant increase of the average metallicities from about 0.16 Z_sun at the cosmic epoch corresponding to z ~ 3.2 to about 0.42 Z_sun at z ~ 2.3. A significant further increase in metallicity during later epochs cannot be detected in our data. Compared to the local starburst galaxies our high-redshift objects tend to be overluminous for a fixed metallicity. Our observational results are in good agreement with published observational data by other authors and with theoretical predictions of the cosmic chemical evolution.
Many galaxies at high redshift have peculiar morphologies dominated by 10^8-10^9 Mo kpc-sized clumps. Using numerical simulations, we show that these clump clusters can result from fragmentation in gravitationally unstable primordial disks. They appear as chain galaxies when observed edge-on. In less than 1 Gyr, clump formation, migration, disruption, and interaction with the disk cause these systems to evolve from initially uniform disks into regular spiral galaxies with an exponential or double-exponential disk profile and a central bulge. The inner exponential is the initial disk size and the outer exponential is from material flung out by spiral arms and clump torques. A nuclear black hole may form at the same time as the bulge from smaller black holes that grow inside the dense cores of each clump. The properties and lifetimes of the clumps in our models are consistent with observations of the clumps in high redshift galaxies, and the stellar motions in our models are consistent with the observed velocity dispersions and lack of organized rotation in chain galaxies. We suggest that violently unstable disks are the first step in spiral galaxy formation. The associated starburst activity gives a short timescale for the initial stellar disk to form.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا