Do you want to publish a course? Click here

Stellar populations of bulges at low redshift

161   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

This chapter summarizes our current understanding of the stellar population properties of bulges and outlines important future research directions.



rate research

Read More

We present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey i-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a S`ersic bulge, an exponential disc, and a Ferrers bar characterized by elliptical and concentric isophotes with constant ellipticity and position angles. The rotation curves and velocity dispersion profiles of the stellar component are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the H{beta}, Mg and Fe line-strength indices are derived too. Correlations between the central values of the Mg 2 and Fe line-strength indices and the velocity dispersion are found. The mean age, total metallicity and total {alpha}/Fe enhancement of the stellar population in the centre and at the radius where the bulge gives the same contribution to the total surface brightness as the remaining components are obtained using stellar population models with variable element abundance ratios. We identify intermediate-age bulges with solar metallicity and old bulges with a large spread in metallicity. Most of the sample bulges display super-solar {alpha}/Fe enhancement, no gradient in age and negative gradients of metallicity and {alpha}/Fe enhancement. These findings support a formation scenario via dissipative collapse where environmental effects are remarkably less important than in the assembly of bulges of galaxies in groups and clusters.
We present a multi-component structural analysis of the internal structure of $1074$ high redshift massive galaxies at $1<z<3$ from the CANDELS HST Survey. In particular we examine galaxies best-fit by two structural components, and thus likely forming discs and bulges. We examine the stellar mass, star formation rates, and colours of both the inner `bulge and outer `disc components for these systems using SED information from the resolved ACS+WFC3 HST imaging. We find that the majority of both inner and outer components lie in the star-forming region of UVJ space ($68$ and $90$ per cent respectively). However, the inner portions, or the likely forming bulges, are dominated by dusty star formation. Furthermore, we show that the outer components of these systems have a higher star formation rate than their inner regions, and the ratio of star formation rate between `disc and `bulge increases at lower redshifts. Despite the higher star formation rate of the outer component, the stellar mass ratio of inner to outer component remains constant through this epoch. This suggests that there is mass transfer from the outer to inner components for typical two component forming systems, thus building bulges from disks. Finally, using Chandra data we find that the presence of an AGN is more common in both $1$-component spheroid-like galaxies and $2$-component systems ($13pm3$ and $11pm2$ per cent) than in $1$-component disc-like galaxies ($3pm1$ per cent), demonstrating that the formation of a central inner-component likely triggers the formation of central massive black holes in these galaxies.
We use high-resolution ($approx 10$ pc), zoom-in simulations of a typical (stellar mass $M_starsimeq10^{10}M_odot$) Lyman Break Galaxy (LBG) at $zsimeq 6$ to investigate the stellar populations of its six dwarf galaxy satellites, whose stellar [gas] masses are in the range $log (M_star/M_odot) simeq 6-9$ [$log (M_{gas}/M_odot) simeq4.3-7.75$]. The properties and evolution of satellites show no dependence on the distance from the central massive LBG ($< 11.5$ kpc). Instead, their star formation and chemical enrichment histories are tightly connected their stellar (and sub-halo) mass. High-mass dwarf galaxies ($rm M_star gtrsim 5times 10^8 M_odot$) experience a long history of star formation, characterised by many merger events. Lower-mass systems go through a series of short star formation episodes, with no signs of mergers; their star formation activity starts relatively late ($zapprox 7$), and it is rapidly quenched by internal stellar feedback. In spite of the different evolutionary patterns, all satellites show a spherical morphology, with ancient and more metal-poor stars located towards the inner regions. All six dwarf satellites experienced high star formation rate ($rm >5,M_odot yr ^{-1}$) bursts, which can be detected by JWST while targeting high-$z$ LBGs.
116 - S. C. Trager OCIW 1998
We present first results from an on-going survey of the stellar populations of the bulges and inner disks of spirals at various points along the Hubble sequence. In particular, we are investigating the hypotheses that bulges of early-type spirals are akin to (and may in fact originally have been) intermediate-luminosity ellipticals while bulges of late-type spirals are formed from dynamical instabilities in their disks. Absorption-line spectroscopy of the central regions of Sa--Sd spirals is combined with stellar population models to determine integrated mean ages and metallicities. These ages and metallicities are used to investigate stellar population differences both between the bulges and inner disks of these spirals and between bulges and ellipticals in an attempt to place observational constraints on the formation mechanisms of spiral bulges.
Boxy and peanut-shaped bulges are seen in about half of edge-on disc galaxies. Comparisons of the photometry and major-axis gas and stellar kinematics of these bulges to simulations of bar formation and evolution indicate that they are bars viewed in projection. If the properties of boxy bulges can be entirely explained by assuming they are bars, then this may imply that their hosts are pure disc galaxies with no classical bulge. A handful of these bulges, including that of the Milky Way, have been observed to rotate cylindrically, i.e. with a mean stellar velocity independent of height above the disc. In order to assess whether such behaviour is ubiquitous in boxy bulges, and whether a pure disc interpretation is consistent with their stellar populations, we have analysed the stellar kinematics and populations of the boxy or peanut-shaped bulges in a sample of five edge-on galaxies. We placed slits along the major axis of each galaxy and at three offset but parallel positions to build up spatial coverage. The boxy bulge of NGC3390 rotates perfectly cylindrically within the spatial extent and uncertainties of the data. This is consistent with the metallicity and alpha-element enhancement of the bulge, which are the same as in the disk. This galaxy is thus a pure disc galaxy. The boxy bulge of ESO311-G012 also rotates very close to cylindrically. The boxy bulge of NGC1381 is neither clearly cylindrically nor non-cylindrically rotating, but it has a negative vertical metallicity gradient and is alpha-enhanced with respect to its disc, suggesting a composite bulge comprised of a classical bulge and bar (and possibly a discy pseudobulge) [abridged] Even this relatively small sample is sufficient to demonstrate that boxy bulges display a range of rotational and population properties, indicating that they do not form a homogeneous class of object.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا