Do you want to publish a course? Click here

Rapid formation of exponential disks and bulges at high redshift from the dynamical evolution of clump cluster and chain galaxies

108   0   0.0 ( 0 )
 Added by Frederic Bournaud
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many galaxies at high redshift have peculiar morphologies dominated by 10^8-10^9 Mo kpc-sized clumps. Using numerical simulations, we show that these clump clusters can result from fragmentation in gravitationally unstable primordial disks. They appear as chain galaxies when observed edge-on. In less than 1 Gyr, clump formation, migration, disruption, and interaction with the disk cause these systems to evolve from initially uniform disks into regular spiral galaxies with an exponential or double-exponential disk profile and a central bulge. The inner exponential is the initial disk size and the outer exponential is from material flung out by spiral arms and clump torques. A nuclear black hole may form at the same time as the bulge from smaller black holes that grow inside the dense cores of each clump. The properties and lifetimes of the clumps in our models are consistent with observations of the clumps in high redshift galaxies, and the stellar motions in our models are consistent with the observed velocity dispersions and lack of organized rotation in chain galaxies. We suggest that violently unstable disks are the first step in spiral galaxy formation. The associated starburst activity gives a short timescale for the initial stellar disk to form.



rate research

Read More

155 - A.Pipino 2007
We present a new class of hydrodynamical models for the formation of bulges (either massive elliptical galaxies or classical bulges in spirals) in which we implement detailed prescriptions for the chemical evolution of H, He, O and Fe. Our results hint toward an outside-in formation in the context of the supernovae-driven wind scenario. The build-up of the chemical properties of the stellar populations inhabiting the galactic core is very fast. Therefore we predict a non significant evolution of both the mass-metallicity and the mass-[alpha/Fe] relations after the first 0.5 - 1 Gyr. In this framework we explain how the observed slopes, either positive or negative, in the radial gradient of the mean stellar [alpha/Fe], and their apparent lack of any correlation with all the other observables, can arise as a consequence of the interplay between star formation and metal-enhanced internal gas flows.
The major axis and ellipse-fit intensity profiles of spiral galaxies larger than 0.3 in the Hubble Space Telescope Ultra Deep Field (UDF) are generally exponential, whereas the major axis profiles in irregular disk galaxies, called clump-clusters in our previous studies, are clearly not. Here we show that the deprojected positions of star-forming clumps in both galaxy types are exponential, as are the deprojected luminosity profiles of the total emissions from these clumps. These exponentials are the same for both types when normalized to the outer isophotal radii. The results imply that clumps form or accrete in exponential radial distributions, and when they disperse they form smooth exponential disks. The exponential scale lengths for UDF spirals average 1.5 kpc for a standard cosmology. This length is smaller than the average for local spirals by a factor of 2. Selection effects that may account for this size difference among spirals are discussed. Regardless of these effects, the mere existence of small UDF galaxies with grand-design spiral arms differs significantly from the situation in local fields, where equally small disks are usually dwarf Irregulars that rarely have spiral arms. Spiral arms require a disk mass comparable to the halo mass in the visible region -- something local spirals have but local dwarfs Irregulars do not. Our UDF result then implies that galaxy disks grow from the inside out, starting with a dense halo and dense disk that can form spiral arms, and then adding lower density halo and disk material over time. Bars that form early in such small, dense, gas-rich disks should disperse more quickly than bars that form later in fully developed disks.
After presenting three ways of defining a bulge component in disc galaxies, we introduce the various types of bulges, namely the classical bulges, the boxy/peanut bulges and the disc-like bulges. We then discuss three specific topics linked to bulge formation and evolution, namely the coupled time evolution of the bar, buckling and peanut strengths; the effect of velocity anisotropy on peanut formation; and bulge formation via bar destruction.
206 - Sean L. McGee 2008
We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness--fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Redshift survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disk--dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z=0.4 groups have ~ 5.5 +/- 2 % fewer disk--dominated galaxies than the field, while by z=0.1 this difference has increased to ~ 19 +/- 6 %. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disk population. At both redshifts, the disks of group galaxies have similar scaling relations and show similar median asymmetries as the disks of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge--dominated galaxies is 6 +/- 3 % higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z=0.4 and z=0 using the semi-analytic galaxy catalogues of Bower et al (2006). This model accurately reproduces the B/T distributions of the group and field at z=0.1. However, the model does not reproduce our finding that the deficit of disks in groups has increased significantly since z=0.4.
125 - Chip Kobulnicky 2004
I review the observational characteristics of intermediate-to-high redshift star forming galaxies, including their star formation rates, dust extinctions, ISM kinematics, and chemical compositions. I present evidence that the mean rate of metal enrichment, Delta{Z}/Delta{z}, from z=0--3, as determined from nebular oxygen abundance measurements in star forming galaxies, is 0.15 dex per redshift unit for galaxies more luminous than M_B=-20.5. This rate of chemical enrichment is consistent with the chemical rise in Galactic disk stars. It is less dramatic than, but perhaps consistent with, the enrichment rate of 0.18--0.26+/-0.07 dex per redshift unit seen in Damped Ly alpha systems, and it is much less than predicted by many cosmological evolution models. The high-redshift galaxies observed to date are the most luminous examples from those epochs, and thus, trace only the greatest cosmological overdensities. Star formation in the first 1-2 Gyr appears sufficient to elevate ambient metallicities to near or above the solar value, implying efficient production and retention of metals in these densest environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا