Do you want to publish a course? Click here

Real-time gauge theory simulations from stochastic quantization with optimized updating

103   0   0.0 ( 0 )
 Added by Jurgen Berges
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We investigate simulations for gauge theories on a Minkowskian space-time lattice. We employ stochastic quantization with optimized updating using stochastic reweighting or gauge fixing, respectively. These procedures do not affect the underlying theory but strongly improve the stability properties of the stochastic dynamics, such that simulations on larger real-time lattices can be performed.



rate research

Read More

Recently, a finite-temperature real-time static potential has been introduced via a Schrodinger-type equation satisfied by a certain heavy quarkonium Greens function. Furthermore, it has been pointed out that it possesses an imaginary part, which induces a finite width for the tip of the quarkonium peak in the thermal dilepton production rate. The imaginary part originates from Landau-damping of low-frequency gauge fields, which are essentially classical due to their high occupation number. Here we show how the imaginary part can be measured with classical lattice gauge theory simulations, accounting non-perturbatively for the infrared sector of finite-temperature field theory. We demonstrate that a non-vanishing imaginary part indeed exists non-perturbatively; and that its value agrees semi-quantitatively with that predicted by Hard Loop resummed perturbation theory.
The Wilson action for Euclidean lattice gauge theory defines a positive-definite transfer matrix that corresponds to a unitary lattice gauge theory time-evolution operator if analytically continued to real time. Hoshina, Fujii, and Kikukawa (HFK) recently pointed out that applying the Wilson action discretization to continuum real-time gauge theory does not lead to this, or any other, unitary theory and proposed an alternate real-time lattice gauge theory action that does result in a unitary real-time transfer matrix. The character expansion defining the HFK action is divergent, and in this work we apply a path integral contour deformation to obtain a convergent representation for U(1) HFK path integrals suitable for numerical Monte Carlo calculations. We also introduce a class of real-time lattice gauge theory actions based on analytic continuation of the Euclidean heat-kernel action. Similar divergent sums are involved in defining these actions, but for one action in this class this divergence takes a particularly simple form, allowing construction of a path integral contour deformation that provides absolutely convergent representations for U(1) and SU(N) real-time lattice gauge theory path integrals. We perform proof-of-principle Monte Carlo calculations of real-time U(1) and SU(3) lattice gauge theory and verify that exact results for unitary time evolution of static quark-antiquark pairs in (1 + 1)D are reproduced.
A novel method to study the bulk thermodynamics in lattice gauge theory is proposed on the basis of the Yang-Mills gradient flow with a fictitious time t. The energy density (epsilon) and the pressure (P) of SU(3) gauge theory at fixed temperature are calculated directly on 32^3 x (6,8,10) lattices from the thermal average of the well-defined energy-momentum tensor (T_{mu nu}^R(x)) obtained by the gradient flow. It is demonstrated that the continuum limit can be taken in a controlled manner from the t-dependence of the flowed data.
Lattice QCD at finite chemical potential is difficult due to the sign problem. We use stochastic quantization and complex Langevin dynamics to study this issue. First results for QCD in the hopping expansion are encouraging. U(1) and SU(3) one link models are used to gain further insight into why the method appears to be successful.
122 - Arata Yamamoto 2020
We study the quantum simulation of Z2 lattice gauge theory in 2+1 dimensions. The dual variable formulation, the so-called Wegner duality, is utilized for reducing redundant gauge degrees of freedom. The problem of artificial charge unconservation is resolved for any charge distribution. As a demonstration, we simulate the real-time evolution of the system with two static electric charges, i.e., with two temporal Wilson lines. Some results obtained by the simulator (with no hardware noise) and the real device (with sizable hardware noise) of a quantum computer are shown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا