No Arabic abstract
We study the quantum simulation of Z2 lattice gauge theory in 2+1 dimensions. The dual variable formulation, the so-called Wegner duality, is utilized for reducing redundant gauge degrees of freedom. The problem of artificial charge unconservation is resolved for any charge distribution. As a demonstration, we simulate the real-time evolution of the system with two static electric charges, i.e., with two temporal Wilson lines. Some results obtained by the simulator (with no hardware noise) and the real device (with sizable hardware noise) of a quantum computer are shown.
Lattice gauge theory is an essential tool for strongly interacting non-Abelian fields, such as those in quantum chromodynamics where lattice results have been of central importance for several decades. Recent studies suggest that quantum computers could extend the reach of lattice gauge theory in dramatic ways, but the usefulness of quantum annealing hardware for lattice gauge theory has not yet been explored. In this work, we implement SU(2) pure gauge theory on a quantum annealer for lattices comprising a few plaquettes in a row with a periodic boundary condition. These plaquettes are in two spatial dimensions and calculations use the Hamiltonian formulation where time is not discretized. Numerical results are obtained from calculations on D-Wave Advantage hardware for eigenvalues, eigenvectors, vacuum expectation values, and time evolution. The success of this initial exploration indicates that the quantum annealer might become a useful hardware platform for some aspects of lattice gauge theories.
We discuss a phase diagram for a relativistic SU(2) x U_{S}(1) lattice gauge theory, with emphasis on the formation of a parity-invariant chiral condensate, in the case when the $U_{S}(1)$ field is infinitely coupled, and the SU(2) field is moved away from infinite coupling by means of a strong-coupling expansion. We provide analytical arguments on the existence of (and partially derive) a critical line in coupling space, separating the phase of broken SU(2) symmetry from that where the symmetry is unbroken. We review uncoventional (Kosterlitz-Thouless type) superconducting properties of the model, upon coupling it to external electromagnetic potentials. We discuss the r^ole of instantons of the unbroken subgroup U(1) of SU(2), in eventually destroying superconductivity under certain circumstances. The model may have applications to the theory of high-temperature superconductivity. In particular, we argue that in the regime of the couplings leading to the broken SU(2) phase, the model may provide an explanation on the appearance of a pseudo-gap phase, lying between the antiferromagnetic and the superconducting phases. In such a phase, a fermion mass gap appears in the theory, but there is no phase coherence, due to the Kosterlitz-Thouless mode of symmetry breaking. The absence of superconductivity in this phase is attributed to non-perturbative effects (instantons) of the subgroup U(1) of SU(2).
An algorithm is proposed for the simulation of pure SU(N) lattice gauge theories based on Genetic Algorithms(GAs). We apply GAs to SU(2) pure gauge theory on a 2 dimensional lattice and show the results, the action per plaquette and Wilson loops, are consistent with those by Metropolis method(MP)s and Heatbath method(HB)s. Thermalization speed of GAs is especially faster than the simple MPs.
We study the U(2) lattice gauge theory in the pure gauge sector using the simplest action, with determinant and fundamental terms, having the naive continuum limit of SU(2)$times$U(1). We determine part of the phase diagram of the model and find a first-order critical line which goes through the U(1) critical point. We show how to deduce both the order parameter of the first-order transition and the U(2) renormalization group flow from the lattice potential in the determinant and fundamental representations. We give evidence that a Monte-Carlo simulation of the model is indeed consistent with the symmetric SU(2)$times$U(1) continuum limit in the weak coupling pertubative regime.
The Wilson action for Euclidean lattice gauge theory defines a positive-definite transfer matrix that corresponds to a unitary lattice gauge theory time-evolution operator if analytically continued to real time. Hoshina, Fujii, and Kikukawa (HFK) recently pointed out that applying the Wilson action discretization to continuum real-time gauge theory does not lead to this, or any other, unitary theory and proposed an alternate real-time lattice gauge theory action that does result in a unitary real-time transfer matrix. The character expansion defining the HFK action is divergent, and in this work we apply a path integral contour deformation to obtain a convergent representation for U(1) HFK path integrals suitable for numerical Monte Carlo calculations. We also introduce a class of real-time lattice gauge theory actions based on analytic continuation of the Euclidean heat-kernel action. Similar divergent sums are involved in defining these actions, but for one action in this class this divergence takes a particularly simple form, allowing construction of a path integral contour deformation that provides absolutely convergent representations for U(1) and SU(N) real-time lattice gauge theory path integrals. We perform proof-of-principle Monte Carlo calculations of real-time U(1) and SU(3) lattice gauge theory and verify that exact results for unitary time evolution of static quark-antiquark pairs in (1 + 1)D are reproduced.