A novel method to study the bulk thermodynamics in lattice gauge theory is proposed on the basis of the Yang-Mills gradient flow with a fictitious time t. The energy density (epsilon) and the pressure (P) of SU(3) gauge theory at fixed temperature are calculated directly on 32^3 x (6,8,10) lattices from the thermal average of the well-defined energy-momentum tensor (T_{mu nu}^R(x)) obtained by the gradient flow. It is demonstrated that the continuum limit can be taken in a controlled manner from the t-dependence of the flowed data.
We present the scale-setting function and the equation of state of the pure SU(2) gauge theory using the gradient flow method. We propose a reference scale t0 for the SU(2) gauge theory satisfying $t^2langle E rangle|_{t=t_0} = 0.1$. This reference value is fixed by a natural scaling-down of the standard t0-scale for the SU(3) gauge theory based on the perturbative analyses. We also show the thermodynamic quantities as a function of $T/T_c$, which are derived by the energy-momentum tensor using the small flow time expansion of the gradient flow.
The energy density and the pressure of SU(3) gauge theory at finite temperature are studied by direct lattice measurements of the renormalized energy-momentum tensor obtained by the gradient flow. Numerical analyses are carried out with $beta=6.287$--$7.500$ corresponding to the lattice spacing $a= 0.013$--$0.061,mathrm{fm}$. The spatial (temporal) sizes are chosen to be $N_s= 64$, $96$, $128$ ($N_{tau}=12$, $16$, $20$, $22$, $24$) with the aspect ratio, $5.33 le N_s/N_{tau} le 8$. Double extrapolation, $arightarrow 0$ (the continuum limit) followed by $trightarrow 0$ (the zero flow-time limit), is taken using the numerical data. Above the critical temperature, the thermodynamic quantities are obtained with a few percent precision including statistical and systematic errors. The results are in good agreement with previous high-precision data obtained by using the integral method.
To obtain the precise values of the bulk quantities and transport coefficients in quark-gluon-plasma phase, we propose that a direct calculation of the renormalized energy-momentum tensor (EMT) on the lattice using the gradient flow. From one-point function of EMT, authors in Ref.[1] obtained the interaction measure and thermal entropy. The results are consistent with the one obtained by the integral method. Based on the success, we try to measure the two-point function of EMT, which is related to the transport coefficients. Advantages of our method are (1) a clear signal because of the smearing effects of the gradient flow and (2) no need to calculate the wave function renormalization of EMT. In addition, we give a short remark on a comparison of the numerical cost between the positive- and adjoint-flow methods for fermions, needed to obtain the EMT in the (2+1) flavor QCD.
We investigate SU(3) gauge theories in four dimensions with Nf fundamental fermions, on a lattice using the Wilson fermion. Clarifying the vacuum structure in terms of Polyakov loops in spatial directions and properties of temporal propagators using a new method local analysis, we conjecture that the conformal region exists together with the confining region and the deconfining region in the phase structure parametrized by beta and K, both in the cases of the large Nf QCD within the conformal window (referred as Conformal QCD) with an IR cutoff and small Nf QCD at T/Tc>1 with Tc being the chiral transition temperature (referred as High Temperature QCD). Our numerical simulation on a lattice of the size 16^3 x 64 shows the following evidence of the conjecture. In the conformal region we find the vacuum is the nontrivial Z(3) twisted vacuum modified by non-perturbative effects and temporal propagators of meson behave at large t as a power-law corrected Yukawa-type decaying form. The transition from the conformal region to the deconfining region or the confining region is a sharp transition between different vacua and therefore it suggests a first order transition both in Conformal QCD and in High Temperature QCD. Within our fixed lattice simulation, we find that there is a precise correspondence between Conformal QCD and High Temperature QCD in the temporal propagators under the change of the parameters Nf and T/Tc respectively. In particular, we find the correspondence between Conformal QCD with Nf = 7 and High Temperature QCD with Nf=2 at T ~ 2 Tc being in close relation to a meson unparticle model. From this we estimate the anomalous mass dimension gamma* = 1.2 (1) for Nf=7. We also show that the asymptotic state in the limit T/Tc --> infty is a free quark state in the Z(3) twisted vacuum.
We study thermodynamics of SU(3) gauge theory at fixed scales on the lattice, where we vary temperature by changing the temporal lattice size N_t=(Ta_t)^{-1}. In the fixed scale approach, finite temperature simulations are performed on common lattice spacings and spatial volumes. Consequently, we can isolate thermal effects in observables from other uncertainties, such as lattice artifact, renormalization factor, and spatial volume effect. Furthermore, in the EOS calculations, the fixed scale approach is able to reduce computational costs for zero temperature subtraction and parameter search to find lines of constant physics, which are demanding in full QCD simulations. As a test of the approach, we study the thermodynamics of the SU(3) gauge theory on isotropic and anisotropic lattices. In addition to the equation of state, we calculate the critical temperature and the static quark free energy at a fixed scale.