No Arabic abstract
The radial-breathing-like phonon modes (RBLMs) of the double-walled carbon nanotubes are studied in a simple analytical model, in which the interaction force constants (FCs) can be obtained analytically from the continuous model. The RBLMs frequencies are obtained by solving the dynamical matrix, and their relationship with the tube radii can be obtained analytically, offering a powerful experimental tool for determining precisely the radii of the multi-walled carbon nanotubes.
Using the first principles calculations we have studied the vibrational modes and Raman spectra of a (10, 10) single-walled carbon nanotube (SWNT) bundle under hydrostatic pressure. Detailed analysis shows that the original radial breathing mode (RBM) of the SWNT bundle disappears after the structural phase transition (SPT). And significantly a RBM-like mode appears at about 509 cm^{-1}, which could be considered as a fingerprint of the SPT happened in the SWNT bundle, and further used to determine the microscopic structure of the bundle after the SPT.
A phonon frequency shift of the radial breathing mode for metallic single wall carbon nanotubes is predicted as a function of Fermi energy. Armchair nanotubes do not show any frequency shift while zigzag nanotubes exhibit phonon softening, but this softening is not associated with the broadening. This chirality dependence originates from a curvature-induced energy gap and a special electron-phonon coupling mechanism for radial breathing modes. Because of the particle-hole symmetry, only the off-site deformation potential contributes to the frequency shift. On the other hand, the on-site potential contributes to the Raman intensity, and the radial breathing mode intensity is stronger than that of the $G$ band. The relationship between the chirality dependence of the frequency shift of the radial breathing mode and the $Gamma$ point optical phonon frequency shift is discussed.
We have observed large-amplitude coherent phonon oscillations of radial breathing modes (RBMs) in single-walled carbon nanotubes excited through the lowest-energy (E11) interband transitions. In contrast to the previously-studied coherent phonons excited through higher-energy (E22) transitions, these RBMs show comparable intensities between (n-m) mod 3 = 1 and -1 nanotubes. We also find novel non-resonantly excited RBMs over an excitation range of ~300 meV above the E11 transition, which we attribute to multi-phonon replicas arising from strong exciton-phonon coupling.
Using femtosecond pump-probe spectroscopy with pulse shaping techniques, one can generate and detect coherent phonons in chirality-specific semiconducting single-walled carbon nanotubes. The signals are resonantly enhanced when the pump photon energy coincides with an interband exciton resonance, and analysis of such data provides a wealth of information on the chirality-dependence of light absorption, phonon generation, and phonon-induced band structure modulations. To explain our experimental results, we have developed a microscopic theory for the generation and detection of coherent phonons in single-walled carbon nanotubes using a tight-binding model for the electronic states and a valence force field model for the phonons. We find that the coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on photoexcited carrier density. We compared our theoretical results with experimental results on mod 2 nanotubes and found that our model provides satisfactory overall trends in the relative strengths of the coherent phonon signal both within and between different mod 2 families. We also find that the coherent phonon intensities are considerably weaker in mod 1 nanotubes in comparison with mod~2 nanotubes, which is also in excellent agreement with experiment.
We report a measurement on quantum capacitance of individual semiconducting and small band gap SWNTs. The observed quantum capacitance is remarkably smaller than that originating from density of states and it implies a strong electron correlation in SWNTs.