Do you want to publish a course? Click here

A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam. (Project MODULAr)

105   0   0.0 ( 0 )
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about 1.2 km equivalent water depth; (3) A new LAr Imaging detector of at least 20 kt fiducial mass. Such an increase in the volume over the current ICARUS T600 needs to be carefully considered. It is concluded that a very large mass is best realised with a set of many identical, independent units, each of 5 kt, cloning the technology of the T600. Further phases may foresee extensions of MODULAr to meet future physics goals. The experiment might reasonably be operational in about 4/5 years, provided a new hall is excavated in the vicinity of the Gran Sasso Laboratory and adequate funding and participation are made available.



rate research

Read More

188 - R. Acciarri , C. Adams , J. Asaadi 2016
The capabilities of liquid argon time projection chambers (LArTPCs) to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($ u_e$) appearance. The LArTPC promises excellent background rejection capabilities, especially in this golden channel for both short and long baseline neutrino oscillation experiments. We present the first experimental observation of electron neutrinos and anti-neutrinos in the ArgoNeut LArTPC, in the energy range relevant to DUNE and the Fermilab Short Baseline Neutrino Program. We have selected 37 electron candidate events and 274 gamma candidate events, and measured an 80% purity of electrons based on a topological selection. Additionally, we present a of separation of electrons from gammas using calorimetric energy deposition, demonstrating further separation of electrons from background gammas.
58 - S. Aune , P. Colas , J. Dolbeau 2005
A novel low-energy ($sim$few keV) neutrino-oscillation experiment NOSTOS, combining a strong tritium source and a high pressure spherical Time Projection Chamber (TPC) detector 10 m in radius has been recently proposed. The oscillation of neutrinos of such energies occurs within the size of the detector itself, potentially allowing for a very precise (and rather systematics-free) measure of the oscillation parameters, in particular, of the smaller mixing angle $theta_{13}$, which value could be determined for the first time. This detector could also be sensitive to the neutrino magnetic moment and be capable of accurately measure the Weinberg angle at low energy. The same apparatus, filled with high pressure Xenon, exhibits a high sensitivity as a Super Nova neutrino detector with extra galactic sensitivity. The outstanding benefits of the new concept of the spherical TPC will be presented, as well as the issues to be demonstrated in the near future by an ongoing R&D. The very first results of small prototype in operation in Saclay are shown.
89 - J.D. Vergados 2010
In the present work we propose to study neutrino oscillations employing sources of monoenergetic neutrinos following electron capture by the nucleus. Since the neutrino energy is very low the smaller of the two oscillation lengths, L23, appearing in this electronic neutrino disappearance experiment can be so small that the full oscillation can take place inside the detector and one may determine very accurately the neutrino oscillation parameters. Since in this case the oscillation probability is proportional to theta13, one can measure or set a better limit on the unknown parameter theta13. This is quite important, since, if this mixing angle vanishes, there is not going to be CP violation in the leptonic sector. The best way to detect it is by measuring electron recoils in neutrino-electron scattering. One, however, has to pay the price that the expected counting rates are very small. Thus one needs a very intensive neutrino source and a large detector with as low as possible energy threshold and high energy and position resolution. Both spherical gaseous and cylindrical liquid detectors are studied. Different source candidates are considered.
We propose to construct the finite modular groups from the quotient of two principal congruence subgroups as $Gamma(N)/Gamma(N)$, and the modular group $SL(2,mathbb{Z})$ is extended to a principal congruence subgroup $Gamma(N)$. The original modular invariant theory is reproduced when $N=1$. We perform a comprehensive study of $Gamma_6$ modular symmetry corresponding to $N=1$ and $N=6$, five types of models for lepton masses and mixing with $Gamma_6$ modular symmetry are discussed and some example models are studied numerically. The case of $N=2$ and $N=6$ is considered, the finite modular group is $Gamma(2)/Gamma(6)cong T$, and a benchmark model is constructed.
The HERMES-TP/SP (High Energy Rapid Modular Ensemble of Satellites -- Technologic and Scientific Pathfinder) is an in-orbit demonstration of the so-called distributed astronomy concept. Conceived as a mini-constellation of six 3U nano-satellites hosting a new miniaturized detector, HERMES-TP/SP aims at the detection and accurate localisation of bright high-energy transients such as Gamma-Ray Bursts. The large energy band, the excellent temporal resolution and the wide field of view that characterize the detectors of the constellation represent the key features for the next generation high-energy all-sky monitor with good localisation capabilities that will play a pivotal role in the future of Multi-messenger Astronomy. In this work, we will describe in detail the temporal techniques that allow the localisation of bright transient events taking advantage of their almost simultaneous observation by spatially spaced detectors. Moreover, we will quantitatively discuss the all-sky monitor capabilities of the HERMES Pathfinder as well as its achievable accuracies on the localisation of the detected Gamma-Ray Bursts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا