Do you want to publish a course? Click here

Controllable Semantic Parsing via Retrieval Augmentation

التحليل الدلالي قابل للتحكم عبر تكبير استرجاع

338   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In practical applications of semantic parsing, we often want to rapidly change the behavior of the parser, such as enabling it to handle queries in a new domain, or changing its predictions on certain targeted queries. While we can introduce new training examples exhibiting the target behavior, a mechanism for enacting such behavior changes without expensive model re-training would be preferable. To this end, we propose ControllAble Semantic Parser via Exemplar Retrieval (CASPER). Given an input query, the parser retrieves related exemplars from a retrieval index, augments them to the query, and then applies a generative seq2seq model to produce an output parse. The exemplars act as a control mechanism over the generic generative model: by manipulating the retrieval index or how the augmented query is constructed, we can manipulate the behavior of the parser. On the MTOP dataset, in addition to achieving state-of-the-art on the standard setup, we show that CASPER can parse queries in a new domain, adapt the prediction toward the specified patterns, or adapt to new semantic schemas without having to further re-train the model.



References used
https://aclanthology.org/
rate research

Read More

Despite showing increasingly human-like conversational abilities, state-of-the-art dialogue models often suffer from factual incorrectness and hallucination of knowledge (Roller et al., 2020). In this work we explore the use of neural-retrieval-in-th e-loop architectures - recently shown to be effective in open-domain QA (Lewis et al., 2020b; Izacard and Grave, 2020) - for knowledge-grounded dialogue, a task that is arguably more challenging as it requires querying based on complex multi-turn dialogue context and generating conversationally coherent responses. We study various types of architectures with multiple components - retrievers, rankers, and encoder-decoders - with the goal of maximizing knowledgeability while retaining conversational ability. We demonstrate that our best models obtain state-of-the-art performance on two knowledge-grounded conversational tasks. The models exhibit open-domain conversational capabilities, generalize effectively to scenarios not within the training data, and, as verified by human evaluations, substantially reduce the well-known problem of knowledge hallucination in state-of-the-art chatbots.
Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of image s and their corresponding captions for improving visual question answering (VQA). First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement in performance on image-caption retrieval w.r.t. similar methods. Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines. We further conduct extensive experiments to establish the promise of this approach, and examine novel applications for inference time such as hot-swapping indices.
Recent work on opinion summarization produces general summaries based on a set of input reviews and the popularity of opinions expressed in them. In this paper, we propose an approach that allows the generation of customized summaries based on aspect queries (e.g., describing the location and room of a hotel). Using a review corpus, we create a synthetic training dataset of (review, summary) pairs enriched with aspect controllers which are induced by a multi-instance learning model that predicts the aspects of a document at different levels of granularity. We fine-tune a pretrained model using our synthetic dataset and generate aspect-specific summaries by modifying the aspect controllers. Experiments on two benchmarks show that our model outperforms the previous state of the art and generates personalized summaries by controlling the number of aspects discussed in them.
We describe a span-level supervised attention loss that improves compositional generalization in semantic parsers. Our approach builds on existing losses that encourage attention maps in neural sequence-to-sequence models to imitate the output of cla ssical word alignment algorithms. Where past work has used word-level alignments, we focus on spans; borrowing ideas from phrase-based machine translation, we align subtrees in semantic parses to spans of input sentences, and encourage neural attention mechanisms to mimic these alignments. This method improves the performance of transformers, RNNs, and structured decoders on three benchmarks of compositional generalization.
Graph-based semantic parsing aims to represent textual meaning through directed graphs. As one of the most promising general-purpose meaning representations, these structures and their parsing have gained a significant interest momentum during recent years, with several diverse formalisms being proposed. Yet, owing to this very heterogeneity, most of the research effort has focused mainly on solutions specific to a given formalism. In this work, instead, we reframe semantic parsing towards multiple formalisms as Multilingual Neural Machine Translation (MNMT), and propose SGL, a many-to-many seq2seq architecture trained with an MNMT objective. Backed by several experiments, we show that this framework is indeed effective once the learning procedure is enhanced with large parallel corpora coming from Machine Translation: we report competitive performances on AMR and UCCA parsing, especially once paired with pre-trained architectures. Furthermore, we find that models trained under this configuration scale remarkably well to tasks such as cross-lingual AMR parsing: SGL outperforms all its competitors by a large margin without even explicitly seeing non-English to AMR examples at training time and, once these examples are included as well, sets an unprecedented state of the art in this task. We release our code and our models for research purposes at https://github.com/SapienzaNLP/sgl.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا