Do you want to publish a course? Click here

Aligning Actions Across Recipe Graphs

محاذاة الإجراءات عبر الرسوم البيانية وصفة

160   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Recipe texts are an idiosyncratic form of instructional language that pose unique challenges for automatic understanding. One challenge is that a cooking step in one recipe can be explained in another recipe in different words, at a different level of abstraction, or not at all. Previous work has annotated correspondences between recipe instructions at the sentence level, often glossing over important correspondences between cooking steps across recipes. We present a novel and fully-parsed English recipe corpus, ARA (Aligned Recipe Actions), which annotates correspondences between individual actions across similar recipes with the goal of capturing information implicit for accurate recipe understanding. We represent this information in the form of recipe graphs, and we train a neural model for predicting correspondences on ARA. We find that substantial gains in accuracy can be obtained by taking fine-grained structural information about the recipes into account.

References used
https://aclanthology.org/

rate research

Read More

In order to interpret the communicative intents of an utterance, it needs to be grounded in something that is outside of language; that is, grounded in world modalities. In this paper, we argue that dialogue clarification mechanisms make explicit the process of interpreting the communicative intents of the speaker's utterances by grounding them in the various modalities in which the dialogue is situated. This paper frames dialogue clarification mechanisms as an understudied research problem and a key missing piece in the giant jigsaw puzzle of natural language understanding. We discuss both the theoretical background and practical challenges posed by this problem and propose a recipe for obtaining grounding annotations. We conclude by highlighting ethical issues that need to be addressed in future work.
Text generation from semantic graphs is traditionally performed with deterministic methods, which generate a unique description given an input graph. However, the generation problem admits a range of acceptable textual outputs, exhibiting lexical, sy ntactic and semantic variation. To address this disconnect, we present two main contributions. First, we propose a stochastic graph-to-text model, incorporating a latent variable in an encoder-decoder model, and its use in an ensemble. Second, to assess the diversity of the generated sentences, we propose a new automatic evaluation metric which jointly evaluates output diversity and quality in a multi-reference setting. We evaluate the models on WebNLG datasets in English and Russian, and show an ensemble of stochastic models produces diverse sets of generated sentences while, retaining similar quality to state-of-the-art models.
Knowledge graph entity typing aims to infer entities' missing types in knowledge graphs which is an important but under-explored issue. This paper proposes a novel method for this task by utilizing entities' contextual information. Specifically, we d esign two inference mechanisms: i) N2T: independently use each neighbor of an entity to infer its type; ii) Agg2T: aggregate the neighbors of an entity to infer its type. Those mechanisms will produce multiple inference results, and an exponentially weighted pooling method is used to generate the final inference result. Furthermore, we propose a novel loss function to alleviate the false-negative problem during training. Experiments on two real-world KGs demonstrate the effectiveness of our method. The source code and data of this paper can be obtained from https://github.com/CCIIPLab/CET.
Although paths of user interests shift in knowledge graphs (KGs) can benefit conversational recommender systems (CRS), explicit reasoning on KGs has not been well considered in CRS, due to the complex of high-order and incomplete paths. We propose CR FR, which effectively does explicit multi-hop reasoning on KGs with a conversational context-based reinforcement learning model. Considering the incompleteness of KGs, instead of learning single complete reasoning path, CRFR flexibly learns multiple reasoning fragments which are likely contained in the complete paths of interests shift. A fragments-aware unified model is then designed to fuse the fragments information from item-oriented and concept-oriented KGs to enhance the CRS response with entities and words from the fragments. Extensive experiments demonstrate CRFR's SOTA performance on recommendation, conversation and conversation interpretability.
With the recent surge in social applications relying on knowledge graphs, the need for techniques to ensure fairness in KG based methods is becoming increasingly evident. Previous works have demonstrated that KGs are prone to various social biases, a nd have proposed multiple methods for debiasing them. However, in such studies, the focus has been on debiasing techniques, while the relations to be debiased are specified manually by the user. As manual specification is itself susceptible to human cognitive bias, there is a need for a system capable of quantifying and exposing biases, that can support more informed decisions on what to debias. To address this gap in the literature, we describe a framework for identifying biases present in knowledge graph embeddings, based on numerical bias metrics. We illustrate the framework with three different bias measures on the task of profession prediction, and it can be flexibly extended to further bias definitions and applications. The relations flagged as biased can then be handed to decision makers for judgement upon subsequent debiasing.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا