يعد تعلم الفروق المحتمات الدقيقة بين العناصر المفردات تحديا رئيسيا في تعلم لغة جديدة.على سبيل المثال، يحتوي جدار الاسم "على مظاهر معجمية مختلفة باللغة الإسبانية - قلص" "يشير إلى جدار داخلي بينما يشير مورو" إلى جدار خارجي.ومع ذلك، قد لا يكون هذا التنوع من التمييز المعجمي واضحا للمتعلمين غير الأصليين ما لم يتم تفسير التمييز بهذه الطريقة.في هذا العمل، نقدم طريقة لتحديد التفرقات المعجمية المحتلة تلقائيا، واستخراج القواعد في توضيح هذه الفروق بتنسيق قابل للقراءة بين الإنسان والآلات.نحن نؤكد جودة هذه القواعد المستخرجة في إعداد تعلم اللغة لغتين وإسبانيا واليونانيين، حيث نستخدم القواعد لتدريس الناطقين غير الأصلية عند ترجمة كلمة غامضة معينة في ترجماتها المختلفة المحتملة.
Learning fine-grained distinctions between vocabulary items is a key challenge in learning a new language. For example, the noun wall'' has different lexical manifestations in Spanish -- pared'' refers to an indoor wall while muro'' refers to an outside wall. However, this variety of lexical distinction may not be obvious to non-native learners unless the distinction is explained in such a way. In this work, we present a method for automatically identifying fine-grained lexical distinctions, and extracting rules explaining these distinctions in a human- and machine-readable format. We confirm the quality of these extracted rules in a language learning setup for two languages, Spanish and Greek, where we use the rules to teach non-native speakers when to translate a given ambiguous word into its different possible translations.
References used
https://aclanthology.org/
Models of language trained on very large corpora have been demonstrated useful for natural language processing. As fixed artifacts, they have become the object of intense study, with many researchers probing'' the extent to which they acquire and rea
The staircase visibility concerns with the study of orthogonal polygon, one of the most important subjects which are studied is the Specification kernel of the orthogonal starshaped set. Toranzos represent a very important result in Specifying the ke
The paper describes the MilaNLP team's submission (Bocconi University, Milan) in the WASSA 2021 Shared Task on Empathy Detection and Emotion Classification. We focus on Track 2 - Emotion Classification - which consists of predicting the emotion of re
Transfer learning based on pretraining language models on a large amount of raw data has become a new norm to reach state-of-the-art performance in NLP. Still, it remains unclear how this approach should be applied for unseen languages that are not c
We introduce Classification with Alternating Normalization (CAN), a non-parametric post-processing step for classification. CAN improves classification accuracy for challenging examples by re-adjusting their predicted class probability distribution u