في طرازات اللغة عبر اللغات، تعيش تمثيلات للعديد من اللغات المختلفة في نفس المساحة. هنا، نحقق في العوامل اللغوية وغير اللغوية التي تؤثر على محاذاة على مستوى الجملة في نماذج اللغة المحددة مسبقا بين 101 لغة و 5،050 زوج لغة. باستخدام LASTE BERT-القائم على BERT و LASER المستندة إلى BILSTM كنماذجنا، والكتاب المقدس كجورتنا، نحسب مقياسا يستند إلى المهمة لمحاذاة عبر اللغات في شكل أداء استرجاع BiteXT، بالإضافة إلى أربعة تدابير جوهرية لمساحة المتجهات المحاذاة والتزييف. ثم ندرس مجموعة من الميزات اللغوية واللغوية واللغوية والمتعلقة التدريبية كتنبؤ محتمل من مقاييس المحاذاة. تظهر نتائج تحليلاتنا أن اتفاقية ترتيب الكلمات والاتفاق في التعقيد المورفولوجي هي اثنتان من أقوى المتنبئ اللغوي للقلق. نلاحظ أيضا البيانات التدريبية في الأسرة كمؤشر أقوى من بيانات التدريب المحددة باللغة في جميع المجالات. نحن نتحقق من بعض النتائج اللغوية لدينا من خلال النظر في تأثير تجزئة مورفولوجية على محاذاة اللغة الإنجليزية - غير الأجنبية، بالإضافة إلى دراسة تأثير اتفاقية ترتيب الكلمات على ISomorphism ل 66 أزواج لغة الطلقة الصفرية من كائن مختلف. نحن نجعل البيانات والرمز تجاربنا متاحة للجمهور.
In cross-lingual language models, representations for many different languages live in the same space. Here, we investigate the linguistic and non-linguistic factors affecting sentence-level alignment in cross-lingual pretrained language models for 101 languages and 5,050 language pairs. Using BERT-based LaBSE and BiLSTM-based LASER as our models, and the Bible as our corpus, we compute a task-based measure of cross-lingual alignment in the form of bitext retrieval performance, as well as four intrinsic measures of vector space alignment and isomorphism. We then examine a range of linguistic, quasi-linguistic, and training-related features as potential predictors of these alignment metrics. The results of our analyses show that word order agreement and agreement in morphological complexity are two of the strongest linguistic predictors of cross-linguality. We also note in-family training data as a stronger predictor than language-specific training data across the board. We verify some of our linguistic findings by looking at the effect of morphological segmentation on English-Inuktitut alignment, in addition to examining the effect of word order agreement on isomorphism for 66 zero-shot language pairs from a different corpus. We make the data and code for our experiments publicly available.
References used
https://aclanthology.org/
For children, the system trained on a large corpus of adult speakers performed worse than a system trained on a much smaller corpus of children's speech. This is due to the acoustic mismatch between training and testing data. To capture more acoustic
The recent Text-to-Text Transfer Transformer'' (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 th
Lexical normalization is the task of transforming an utterance into its standardized form. This task is beneficial for downstream analysis, as it provides a way to harmonize (often spontaneous) linguistic variation. Such variation is typical for soci
We present the first annotated corpus for multilingual analysis of potentially unfair clauses in online Terms of Service. The data set comprises a total of 100 contracts, obtained from 25 documents annotated in four different languages: English, Germ
Abstract Prior studies in multilingual language modeling (e.g., Cotterell et al., 2018; Mielke et al., 2019) disagree on whether or not inflectional morphology makes languages harder to model. We attempt to resolve the disagreement and extend those s