Do you want to publish a course? Click here

A Corpus for Multilingual Analysis of Online Terms of Service

وجعة للتحليل متعدد اللغات من شروط الخدمة عبر الإنترنت

225   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We present the first annotated corpus for multilingual analysis of potentially unfair clauses in online Terms of Service. The data set comprises a total of 100 contracts, obtained from 25 documents annotated in four different languages: English, German, Italian, and Polish. For each contract, potentially unfair clauses for the consumer are annotated, for nine different unfairness categories. We show how a simple yet efficient annotation projection technique based on sentence embeddings could be used to automatically transfer annotations across languages.



References used
https://aclanthology.org/
rate research

Read More

The dawn of the digital age led to increasing demands for digital research resources, which shall be quickly processed and handled by computers. Due to the amount of data created by this digitization process, the design of tools that enable the analy sis and management of data and metadata has become a relevant topic. In this context, the Multilingual Corpus of Survey Questionnaires (MCSQ) contributes to the creation and distribution of data for the Social Sciences and Humanities (SSH) following FAIR (Findable, Accessible, Interoperable and Reusable) principles, and provides functionalities for end-users that are not acquainted with programming through an easy-to-use interface. By simply applying the desired filters in the graphic interface, users can build linguistic resources for the survey research and translation areas, such as translation memories, thus facilitating data access and usage.
Multilingual pretrained language models are rapidly gaining popularity in NLP systems for non-English languages. Most of these models feature an important corpus sampling step in the process of accumulating training data in different languages, to en sure that the signal from better resourced languages does not drown out poorly resourced ones. In this study, we train multiple multilingual recurrent language models, based on the ELMo architecture, and analyse both the effect of varying corpus size ratios on downstream performance, as well as the performance difference between monolingual models for each language, and broader multilingual language models. As part of this effort, we also make these trained models available for public use.
In cross-lingual language models, representations for many different languages live in the same space. Here, we investigate the linguistic and non-linguistic factors affecting sentence-level alignment in cross-lingual pretrained language models for 1 01 languages and 5,050 language pairs. Using BERT-based LaBSE and BiLSTM-based LASER as our models, and the Bible as our corpus, we compute a task-based measure of cross-lingual alignment in the form of bitext retrieval performance, as well as four intrinsic measures of vector space alignment and isomorphism. We then examine a range of linguistic, quasi-linguistic, and training-related features as potential predictors of these alignment metrics. The results of our analyses show that word order agreement and agreement in morphological complexity are two of the strongest linguistic predictors of cross-linguality. We also note in-family training data as a stronger predictor than language-specific training data across the board. We verify some of our linguistic findings by looking at the effect of morphological segmentation on English-Inuktitut alignment, in addition to examining the effect of word order agreement on isomorphism for 66 zero-shot language pairs from a different corpus. We make the data and code for our experiments publicly available.
Adapter modules have emerged as a general parameter-efficient means to specialize a pretrained encoder to new domains. Massively multilingual transformers (MMTs) have particularly benefited from additional training of language-specific adapters. Howe ver, this approach is not viable for the vast majority of languages, due to limitations in their corpus size or compute budgets. In this work, we propose MAD-G (Multilingual ADapter Generation), which contextually generates language adapters from language representations based on typological features. In contrast to prior work, our time- and space-efficient MAD-G approach enables (1) sharing of linguistic knowledge across languages and (2) zero-shot inference by generating language adapters for unseen languages. We thoroughly evaluate MAD-G in zero-shot cross-lingual transfer on part-of-speech tagging, dependency parsing, and named entity recognition. While offering (1) improved fine-tuning efficiency (by a factor of around 50 in our experiments), (2) a smaller parameter budget, and (3) increased language coverage, MAD-G remains competitive with more expensive methods for language-specific adapter training across the board. Moreover, it offers substantial benefits for low-resource languages, particularly on the NER task in low-resource African languages. Finally, we demonstrate that MAD-G's transfer performance can be further improved via: (i) multi-source training, i.e., by generating and combining adapters of multiple languages with available task-specific training data; and (ii) by further fine-tuning generated MAD-G adapters for languages with monolingual data.
The ongoing COVID-19 pandemic has brought online education to the forefront of pedagogical discussions. To make this increased interest sustainable in a post-pandemic era, online courses must be built on strong pedagogical foundations. With a long hi story of pedagogic research, there are many principles, frameworks, and models available to help teachers in doing so. These models cover different teaching perspectives, such as constructive alignment, feedback, and the learning environment. In this paper, we discuss how we designed and implemented our online Natural Language Processing (NLP) course following constructive alignment and adhering to the pedagogical principles of LTU. By examining our course and analyzing student evaluation forms, we show that we have met our goal and successfully delivered the course. Furthermore, we discuss the additional benefits resulting from the current mode of delivery, including the increased reusability of course content and increased potential for collaboration between universities. Lastly, we also discuss where we can and will further improve the current course design.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا