Do you want to publish a course? Click here

Text Counterfactuals via Latent Optimization and Shapley-Guided Search

النص مضاد للتصرف عبر التحسين الكامن البحث في SHOPLEY

283   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We study the problem of generating counterfactual text for a classifier as a means for understanding and debugging classification. Given a textual input and a classification model, we aim to minimally alter the text to change the model's prediction. White-box approaches have been successfully applied to similar problems in vision where one can directly optimize the continuous input. Optimization-based approaches become difficult in the language domain due to the discrete nature of text. We bypass this issue by directly optimizing in the latent space and leveraging a language model to generate candidate modifications from optimized latent representations. We additionally use Shapley values to estimate the combinatoric effect of multiple changes. We then use these estimates to guide a beam search for the final counterfactual text. We achieve favorable performance compared to recent white-box and black-box baselines using human and automatic evaluations. Ablation studies show that both latent optimization and the use of Shapley values improve success rate and the quality of the generated counterfactuals.



References used
https://aclanthology.org/
rate research

Read More

Large-scale auto-regressive models have achieved great success in dialogue response generation, with the help of Transformer layers. However, these models do not learn a representative latent space of the sentence distribution, making it hard to cont rol the generation. Recent works have tried on learning sentence representations using Transformer-based framework, but do not model the context-response relationship embedded in the dialogue datasets. In this work, we aim to construct a robust sentence representation learning model, that is specifically designed for dialogue response generation, with Transformer-based encoder-decoder structure. An utterance-level contrastive learning is proposed, encoding predictive information in each context representation for its corresponding response. Extensive experiments are conducted to verify the robustness of the proposed representation learning mechanism. By using both reference-based and reference-free evaluation metrics, we provide detailed analysis on the generated sentences, demonstrating the effectiveness of our proposed model.
1517 - Google 2015 كتاب
The basics of sEO, create unique page titles, improve the website structure, improve the content, dealing with crawlers, improve SEO for mobile devices, using analytics and promotional operating
In this research, we are studying the possibility of contribution in solving the Vehicle Routing Problem with Time Windows(VRPTW),that is one of the optimization problems of the NP-hard type. Moreover, Hybrid algorithm (HA) provided that integrate s between Tabu Search Algorithm and Guided Local Search algorithm And existence 2- Opt Local Search, based on the savings algorithm in terms of continued of a particular objective to provide a lot of savings. As we will compare the presented approach with standard tests to demonstrate the efficiency, and their impact on the quality of the solution in terms of speed of convergence and the ability to find better solutions.
The input vocabulary and the representations learned are crucial to the performance of neural NLP models. Using the full vocabulary results in less explainable and more memory intensive models, with the embedding layer often constituting the majority of model parameters. It is thus common to use a smaller vocabulary to lower memory requirements and construct more interpertable models. We propose a vocabulary selection method that views words as members of a team trying to maximize the model's performance. We apply power indices from cooperative game theory, including the Shapley value and Banzhaf index, that measure the relative importance of individual team members in accomplishing a joint task. We approximately compute these indices to identify the most influential words. Our empirical evaluation examines multiple NLP tasks, including sentence and document classification, question answering and textual entailment. We compare to baselines that select words based on frequency, TF-IDF and regression coefficients under L1 regularization, and show that this game-theoretic vocabulary selection outperforms all baseline on a range of different tasks and datasets.
Deep reinforcement learning provides a promising approach for text-based games in studying natural language communication between humans and artificial agents. However, the generalization still remains a big challenge as the agents depend critically on the complexity and variety of training tasks. In this paper, we address this problem by introducing a hierarchical framework built upon the knowledge graph-based RL agent. In the high level, a meta-policy is executed to decompose the whole game into a set of subtasks specified by textual goals, and select one of them based on the KG. Then a sub-policy in the low level is executed to conduct goal-conditioned reinforcement learning. We carry out experiments on games with various difficulty levels and show that the proposed method enjoys favorable generalizability.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا