نقترح التحكم في إعادة صياغة إعادة صياغة الصياغة من خلال الهياكل النحوية المستهدفة المختارة بعناية لتوليد المزيد من صياغة أعلى جودة أعلى وجودة.نموذجنا، Aesop، يرفع نموذج لغة مسبقين ويضيف عن عمد تم اختيار عنصر تحكم ترنيع عمدا عبر وحدة التحديد القائمة على استرجاع لإنشاء صیر بطلاقة.تشير التجارب إلى أن إيسوب يحقق عروضا حديثة على الحفظ الدلالي والتشطيب النحوي في مجموعات بيانات قياسية مع السيطرة النحوية من الحقيقة الأرضية من النماذج المشروح البشرية.علاوة على ذلك، مع وحدة اختيار بناء الجملة المستهدفة المستندة إلى الاسترجاع، يولد AESOP إعادة صياغة مع صفات أفضل من أفضل النماذج الحالية باستخدام التقييم النحوي المستهدف البشري وفقا للتقييم البشري.نوضح فعاليات AESOP لتحسين نماذج تصنيف النماذج على الإقلاع النحوي عن طريق تكبير البيانات على مهام الغراء.
We propose to control paraphrase generation through carefully chosen target syntactic structures to generate more proper and higher quality paraphrases. Our model, AESOP, leverages a pretrained language model and adds deliberately chosen syntactical control via a retrieval-based selection module to generate fluent paraphrases. Experiments show that AESOP achieves state-of-the-art performances on semantic preservation and syntactic conformation on two benchmark datasets with ground-truth syntactic control from human-annotated exemplars. Moreover, with the retrieval-based target syntax selection module, AESOP generates paraphrases with even better qualities than the current best model using human-annotated target syntactic parses according to human evaluation. We further demonstrate the effectiveness of AESOP to improve classification models' robustness to syntactic perturbation by data augmentation on two GLUE tasks.
References used
https://aclanthology.org/
Paraphrase generation is an important task in natural language processing. Previous works focus on sentence-level paraphrase generation, while ignoring document-level paraphrase generation, which is a more challenging and valuable task. In this paper
A long-standing issue with paraphrase generation is the lack of reliable supervision signals. In this paper, we propose a new unsupervised paradigm for paraphrase generation based on the assumption that the probabilities of generating two sentences w
We present new state-of-the-art benchmarks for paraphrase detection on all six languages in the Opusparcus sentential paraphrase corpus: English, Finnish, French, German, Russian, and Swedish. We reach these baselines by fine-tuning BERT. The best re
This paper focuses on paraphrase generation,which is a widely studied natural language generation task in NLP. With the development of neural models, paraphrase generation research has exhibited a gradual shift to neural methods in the recent years.
Paraphrase generation is a longstanding NLP task that has diverse applications on downstream NLP tasks. However, the effectiveness of existing efforts predominantly relies on large amounts of golden labeled data. Though unsupervised endeavors have be