Do you want to publish a course? Click here

Dimensional Emotion Detection from Categorical Emotion

الكشف عن العاطفة الأبعاد من العاطفة الفئوية

353   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We present a model to predict fine-grained emotions along the continuous dimensions of valence, arousal, and dominance (VAD) with a corpus with categorical emotion annotations. Our model is trained by minimizing the EMD (Earth Mover's Distance) loss between the predicted VAD score distribution and the categorical emotion distributions sorted along VAD, and it can simultaneously classify the emotion categories and predict the VAD scores for a given sentence. We use pre-trained RoBERTa-Large and fine-tune on three different corpora with categorical labels and evaluate on EmoBank corpus with VAD scores. We show that our approach reaches comparable performance to that of the state-of-the-art classifiers in categorical emotion classification and shows significant positive correlations with the ground truth VAD scores. Also, further training with supervision of VAD labels leads to improved performance especially when dataset is small. We also present examples of predictions of appropriate emotion words that are not part of the original annotations.



References used
https://aclanthology.org/
rate research

Read More

In Romanian language there are some resources for automatic text comprehension, but for Emotion Detection, not lexicon-based, there are none. To cover this gap, we extracted data from Twitter and created the first dataset containing tweets annotated with five types of emotions: joy, fear, sadness, anger and neutral, with the intent of being used for opinion mining and analysis tasks. In this article we present some features of our novel dataset, and create a benchmark to achieve the first supervised machine learning model for automatic Emotion Detection in Romanian short texts. We investigate the performance of four classical machine learning models: Multinomial Naive Bayes, Logistic Regression, Support Vector Classification and Linear Support Vector Classification. We also investigate more modern approaches like fastText, which makes use of subword information. Lastly, we fine-tune the Romanian BERT for text classification and our experiments show that the BERT-based model has the best performance for the task of Emotion Detection from Romanian tweets. Keywords: Emotion Detection, Twitter, Romanian, Supervised Machine Learning
The problem of detecting psychological stress in online posts, and more broadly, of detecting people in distress or in need of help, is a sensitive application for which the ability to interpret models is vital. Here, we present work exploring the us e of a semantically related task, emotion detection, for equally competent but more explainable and human-like psychological stress detection as compared to a black-box model. In particular, we explore the use of multi-task learning as well as emotion-based language model fine-tuning. With our emotion-infused models, we see comparable results to state-of-the-art BERT. Our analysis of the words used for prediction show that our emotion-infused models mirror psychological components of stress.
Identifying emotions from text is crucial for a variety of real world tasks. We consider the two largest now-available corpora for emotion classification: GoEmotions, with 58k messages labelled by readers, and Vent, with 33M writer-labelled messages. We design a benchmark and evaluate several feature spaces and learning algorithms, including two simple yet novel models on top of BERT that outperform previous strong baselines on GoEmotions. Through an experiment with human participants, we also analyze the differences between how writers express emotions and how readers perceive them. Our results suggest that emotions expressed by writers are harder to identify than emotions that readers perceive. We share a public web interface for researchers to explore our models.
Appraisal theories explain how the cognitive evaluation of an event leads to a particular emotion. In contrast to theories of basic emotions or affect (valence/arousal), this theory has not received a lot of attention in natural language processing. Yet, in psychology it has been proven powerful: Smith and Ellsworth (1985) showed that the appraisal dimensions attention, certainty, anticipated effort, pleasantness, responsibility/control and situational control discriminate between (at least) 15 emotion classes. We study different annotation strategies for these dimensions, based on the event-focused enISEAR corpus (Troiano et al., 2019). We analyze two manual annotation settings: (1) showing the text to annotate while masking the experienced emotion label; (2) revealing the emotion associated with the text. Setting 2 enables the annotators to develop a more realistic intuition of the described event, while Setting 1 is a more standard annotation procedure, purely relying on text. We evaluate these strategies in two ways: by measuring inter-annotator agreement and by fine- tuning RoBERTa to predict appraisal variables. Our results show that knowledge of the emotion increases annotators' reliability. Further, we evaluate a purely automatic rule-based labeling strategy (inferring appraisal from annotated emotion classes). Training on automatically assigned labels leads to a competitive performance of our classifier, even when tested on manual annotations. This is an indicator that it might be possible to automatically create appraisal corpora for every domain for which emotion corpora already exist.
Song lyrics convey a multitude of emotions to the listener and powerfully portray the emotional state of the writer or singer. This paper examines a variety of modeling approaches to the multi-emotion classification problem for songs. We introduce th e Edmonds Dance dataset, a novel emotion-annotated lyrics dataset from the reader's perspective, and annotate the dataset of Mihalcea and Strapparava (2012) at the song level. We find that models trained on relatively small song datasets achieve marginally better performance than BERT (Devlin et al., 2018) fine-tuned on large social media or dialog datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا