Do you want to publish a course? Click here

Multi-Emotion Classification for Song Lyrics

التصنيف متعدد العاطفة للحصول على كلمات الأغاني

491   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Song lyrics convey a multitude of emotions to the listener and powerfully portray the emotional state of the writer or singer. This paper examines a variety of modeling approaches to the multi-emotion classification problem for songs. We introduce the Edmonds Dance dataset, a novel emotion-annotated lyrics dataset from the reader's perspective, and annotate the dataset of Mihalcea and Strapparava (2012) at the song level. We find that models trained on relatively small song datasets achieve marginally better performance than BERT (Devlin et al., 2018) fine-tuned on large social media or dialog datasets.



References used
https://aclanthology.org/
rate research

Read More

The automatic recognition of idioms poses a challenging problem for NLP applications. Whereas native speakers can intuitively handle multiword expressions whose compositional meanings are hard to trace back to individual word semantics, there is stil l ample scope for improvement regarding computational approaches. We assume that idiomatic constructions can be characterized by gradual intensities of semantic non-compositionality, formal fixedness, and unusual usage context, and introduce a number of measures for these characteristics, comprising count-based and predictive collocation measures together with measures of context (un)similarity. We evaluate our approach on a manually labelled gold standard, derived from a corpus of German pop lyrics. To this end, we apply a Random Forest classifier to analyze the individual contribution of features for automatically detecting idioms, and study the trade-off between recall and precision. Finally, we evaluate the classifier on an independent dataset of idioms extracted from a list of Wikipedia idioms, achieving state-of-the art accuracy.
This paper describes our contribution to the WASSA 2021 shared task on Empathy Prediction and Emotion Classification. The broad goal of this task was to model an empathy score, a distress score and the overall level of emotion of an essay written in response to a newspaper article associated with harm to someone. We have used the ELECTRA model abundantly and also advanced deep learning approaches like multi-task learning. Additionally, we also leveraged standard machine learning techniques like ensembling. Our system achieves a Pearson Correlation Coefficient of 0.533 on sub-task I and a macro F1 score of 0.5528 on sub-task II. We ranked 1st in Emotion Classification sub-task and 3rd in Empathy Prediction sub-task.
Multi-label emotion classification is an important task in NLP and is essential to many applications. In this work, we propose a sequence-to-emotion (Seq2Emo) approach, which implicitly models emotion correlations in a bi-directional decoder. Experim ents on SemEval'18 and GoEmotions datasets show that our approach outperforms state-of-the-art methods (without using external data). In particular, Seq2Emo outperforms the binary relevance (BR) and classifier chain (CC) approaches in a fair setting.
Existing works in multimodal affective computing tasks, such as emotion recognition and personality recognition, generally adopt a two-phase pipeline by first extracting feature representations for each single modality with hand crafted algorithms, a nd then performing end-to-end learning with extracted features. However, the extracted features are fixed and cannot be further fine-tuned on different target tasks, and manually finding feature extracting algorithms does not generalize or scale well to different tasks, which can lead to sub-optimal performance. In this paper, we develop a fully end-to-end model that connects the two phases and optimizes them jointly. In addition, we restructure the current datasets to enable the fully end-to-end training. Furthermore, to reduce the computational overhead brought by the end-to-end model, we introduce a sparse cross-modal attention mechanism for the feature extraction. Experimental results show that our fully end-to-end model significantly surpasses the current state-of-the-art models based on the two-phase pipeline. Moreover, by adding the sparse cross-modal attention, our model can maintain the performance with around half less computation in the feature extraction part of the model.
Appraisal theories explain how the cognitive evaluation of an event leads to a particular emotion. In contrast to theories of basic emotions or affect (valence/arousal), this theory has not received a lot of attention in natural language processing. Yet, in psychology it has been proven powerful: Smith and Ellsworth (1985) showed that the appraisal dimensions attention, certainty, anticipated effort, pleasantness, responsibility/control and situational control discriminate between (at least) 15 emotion classes. We study different annotation strategies for these dimensions, based on the event-focused enISEAR corpus (Troiano et al., 2019). We analyze two manual annotation settings: (1) showing the text to annotate while masking the experienced emotion label; (2) revealing the emotion associated with the text. Setting 2 enables the annotators to develop a more realistic intuition of the described event, while Setting 1 is a more standard annotation procedure, purely relying on text. We evaluate these strategies in two ways: by measuring inter-annotator agreement and by fine- tuning RoBERTa to predict appraisal variables. Our results show that knowledge of the emotion increases annotators' reliability. Further, we evaluate a purely automatic rule-based labeling strategy (inferring appraisal from annotated emotion classes). Training on automatically assigned labels leads to a competitive performance of our classifier, even when tested on manual annotations. This is an indicator that it might be possible to automatically create appraisal corpora for every domain for which emotion corpora already exist.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا