لمعالجة أزمة تلوح في الأفق من التقييم غير المقصود للتعرف على الكيان المسمى، نقترح إرشادات وإدخال SEQSCORE، حزمة البرمجيات لتحسين استنساخ.المبادئ التوجيهية التي نقترحها هي بسيطة للغاية ومركز حول الشفافية فيما يتعلق بكيفية تشفير القطاعات وسجلها.نوضح أنه على الرغم من البساطة الواضحة لتقييم NER، فإن الاختلافات غير المبلغ عليها في إجراءات التهديف يمكن أن تؤدي إلى تغييرات في الدرجات التي تعد كل من حجمها ملحوظا ومهمة إحصائية.وصفنا Seqcore، الذي يتناول العديد من القضايا التي تسبب فشل النسخ المتماثل.
To address a looming crisis of unreproducible evaluation for named entity recognition, we propose guidelines and introduce SeqScore, a software package to improve reproducibility. The guidelines we propose are extremely simple and center around transparency regarding how chunks are encoded and scored. We demonstrate that despite the apparent simplicity of NER evaluation, unreported differences in the scoring procedure can result in changes to scores that are both of noticeable magnitude and statistically significant. We describe SeqScore, which addresses many of the issues that cause replication failures.
References used
https://aclanthology.org/
Abstract We take a step towards addressing the under- representation of the African continent in NLP research by bringing together different stakeholders to create the first large, publicly available, high-quality dataset for named entity recognition
Current work in named entity recognition (NER) shows that data augmentation techniques can produce more robust models. However, most existing techniques focus on augmenting in-domain data in low-resource scenarios where annotated data is quite limite
We explore the application of state-of-the-art NER algorithms to ASR-generated call center transcripts. Previous work in this domain focused on the use of a BiLSTM-CRF model which relied on Flair embeddings; however, such a model is unwieldy in terms
Named Entity Recognition is an essential task in natural language processing to detect entities and classify them into predetermined categories. An entity is a meaningful word, or phrase that refers to proper nouns. Named Entities play an important r
The use of Named Entity Recognition (NER) over archaic Arabic texts is steadily increasing. However, most tools have been either developed for modern English or trained over English language documents and are limited over historical Arabic text. Even