محادثة Deventangle تهدف إلى فصل الرسائل المتداخلة إلى جلسات منفصلة، وهي مهمة أساسية في فهم المحادثات متعددة الأحزاب. يعتمد العمل الحالي في محادثة DEVENTANGLEMELE بشكل كبير على مجموعات البيانات المشروح البشرية، وهي مكلفة للحصول عليها في الممارسة العملية. في هذا العمل، نستكشف تدريب نموذج محادثة محادثة دون الرجوع إلى أي شروح بشرية. تم بناء طريقتنا على خوارزمية التدريب العميق، والتي تتكون من شبكات اثنين من الشبكات العصبية: مصنف رسالة للزوج وفيديو الجلسة. السابق هو المسؤول عن استرجاع العلاقات المحلية بين رسالتين بينما يقتصر الأخير رسالة إلى جلسة من خلال التقاط معلومات السياق. يتم تهيئة كلتا الشبكتين على التوالي مع بيانات زائفة مبنية من Corpus غير المخلفات. خلال عملية التدريب التعويضي العميق، نستخدم مصنف الجلسة كمكون تعليمي للتعزيز لتعلم جلسة تعيين سياسة من خلال تعظيم المكافآت المحلية التي قدمها مصنف زوج الرسائل. بالنسبة إلى مصنف زوج الرسائل، فإننا نشعر بإثراء بيانات التدريب الخاصة بها عن طريق استرداد أزواج الرسائل بثقة عالية من جلسات DESTANGLED المتوقعة من قبل مصنف الجلسة. النتائج التجريبية على مجموعة بيانات حوار السينما الكبيرة تثبت أن نهجنا المقترح يحقق أداء تنافسي مقارنة بالأساليب الخاضعة للإشراف السابقة. تشير المزيد من التجارب إلى أن محادثات الإعصابات المتوقعة يمكن أن تعزز الأداء على المهمة المصب لمختيار استجابة متعددة الأحزاب.
Conversation disentanglement aims to separate intermingled messages into detached sessions, which is a fundamental task in understanding multi-party conversations. Existing work on conversation disentanglement relies heavily upon human-annotated datasets, which is expensive to obtain in practice. In this work, we explore training a conversation disentanglement model without referencing any human annotations. Our method is built upon the deep co-training algorithm, which consists of two neural networks: a message-pair classifier and a session classifier. The former is responsible of retrieving local relations between two messages while the latter categorizes a message to a session by capturing context-aware information. Both the two networks are initialized respectively with pseudo data built from the unannotated corpus. During the deep co-training process, we use the session classifier as a reinforcement learning component to learn a session assigning policy by maximizing the local rewards given by the message-pair classifier. For the message-pair classifier, we enrich its training data by retrieving message pairs with high confidence from the disentangled sessions predicted by the session classifier. Experimental results on the large Movie Dialogue Dataset demonstrate that our proposed approach achieves competitive performance compared to previous supervised methods. Further experiments show that the predicted disentangled conversations can promote the performance on the downstream task of multi-party response selection.
References used
https://aclanthology.org/
Large-scale conversation models are turning to leveraging external knowledge to improve the factual accuracy in response generation. Considering the infeasibility to annotate the external knowledge for large-scale dialogue corpora, it is desirable to
Unsupervised neural machine translation (UNMT) that relies solely on massive monolingual corpora has achieved remarkable results in several translation tasks. However, in real-world scenarios, massive monolingual corpora do not exist for some extreme
Abstractive summarization quality had large improvements since recent language pretraining techniques. However, currently there is a lack of datasets for the growing needs of conversation summarization applications. Thus we collected ForumSum, a dive
To highlight the challenges of achieving representation disentanglement for text domain in an unsupervised setting, in this paper we select a representative set of successfully applied models from the image domain. We evaluate these models on 6 disen
Shared tasks have a long history and have become the mainstream of NLP research. Most of the shared tasks require participants to submit only system outputs and descriptions. It is uncommon for the shared task to request submission of the system itse