المهام المشتركة لها تاريخ طويل وأصبحت السائدة لأبحاث NLP. تتطلب معظم المهام المشتركة المشاركين تقديم مخرجات وأوصاف النظام فقط. من غير المألوف أن تطلب المهمة المشتركة تقديم النظام نفسه بسبب قضايا الترخيص وفروق التنفيذ. لذلك، يتم التخلي عن العديد من الأنظمة دون استخدامها في التطبيقات الحقيقية أو المساهمة في أنظمة أفضل. في هذا البحث، نقترح مخططا للاستفادة من كل تلك النظم التي شاركت في المهام المشتركة. نستخدم جميع مخرجات النظام المشارك كمعلمي المهام في هذا المخطط وتطوير نموذج جديد كطالب يهدف إلى تعلم خصائص كل نظام. نسمي هذا التدريس المشترك بين المخطط. "هذا المخطط يخلق نظام موحد يؤدي أفضل من أفضل نظام المهام الموحد. يتطلب فقط مخرجات النظام، والجهد الإضافي قليلا هناك حاجة إلى المشاركين والمنظمين. نحن نطبق هذا المخطط على المهمة المشتركة Shinra2019-JP، التي لديها تسعة مشاركين بدقة مختلفة من الإخراج، مما يؤكد أن النظام الموحد يتفوق على أفضل نظام. علاوة على ذلك، تم إصدار الرمز المستخدم في تجاربنا.
Shared tasks have a long history and have become the mainstream of NLP research. Most of the shared tasks require participants to submit only system outputs and descriptions. It is uncommon for the shared task to request submission of the system itself because of the license issues and implementation differences. Therefore, many systems are abandoned without being used in real applications or contributing to better systems. In this research, we propose a scheme to utilize all those systems which participated in the shared tasks. We use all participated system outputs as task teachers in this scheme and develop a new model as a student aiming to learn the characteristics of each system. We call this scheme Co-Teaching.'' This scheme creates a unified system that performs better than the task's single best system. It only requires the system outputs, and slightly extra effort is needed for the participants and organizers. We apply this scheme to the SHINRA2019-JP'' shared task, which has nine participants with various output accuracies, confirming that the unified system outperforms the best system. Moreover, the code used in our experiments has been released.
References used
https://aclanthology.org/
The Shared Task on Evaluating Accuracy focused on techniques (both manual and automatic) for evaluating the factual accuracy of texts produced by neural NLG systems, in a sports-reporting domain. Four teams submitted evaluation techniques for this ta
In this paper we discuss an ongoing effort to enrich students' learning by involving them in sense tagging. The main goal is to lead students to discover how we can represent meaning and where the limits of our current theories lie. A subsidiary goal
We present the University of Central Florida systems for the LoResMT 2021 Shared Task, participating in the English-Irish and English-Marathi translation pairs. We focused our efforts on constrained track of the task, using transfer learning and subw
We present the BME submission for the SIGMORPHON 2021 Task 0 Part 1, Generalization Across Typologically Diverse Languages shared task. We use an LSTM encoder-decoder model with three step training that is first trained on all languages, then fine-tu
This paper describes Papago submission to the WMT 2021 Quality Estimation Task 1: Sentence-level Direct Assessment. Our multilingual Quality Estimation system explores the combination of Pretrained Language Models and Multi-task Learning architecture