Do you want to publish a course? Click here

Keyphrase Extraction from Scientific Articles via Extractive Summarization

استخراج المفاتيح من المقالات العلمية عبر تلخيص الاستخراج

447   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Automatically extracting keyphrases from scholarly documents leads to a valuable concise representation that humans can understand and machines can process for tasks, such as information retrieval, article clustering and article classification. This paper is concerned with the parts of a scientific article that should be given as input to keyphrase extraction methods. Recent deep learning methods take titles and abstracts as input due to the increased computational complexity in processing long sequences, whereas traditional approaches can also work with full-texts. Titles and abstracts are dense in keyphrases, but often miss important aspects of the articles, while full-texts on the other hand are richer in keyphrases but much noisier. To address this trade-off, we propose the use of extractive summarization models on the full-texts of scholarly documents. Our empirical study on 3 article collections using 3 keyphrase extraction methods shows promising results.



References used
https://aclanthology.org/
rate research

Read More

Machine learning-based prediction of material properties is often hampered by the lack of sufficiently large training data sets. The majority of such measurement data is embedded in scientific literature and the ability to automatically extract these data is essential to support the development of reliable property prediction methods. In this work, we describe a methodology for developing an automatic property extraction framework using material solubility as the target property. We create a training and evaluation data set containing tags for solubility-related entities using a combination of regular expressions and manual tagging. We then compare five entity recognition models leveraging both token-level and span-level architectures on the task of classifying solute names, solubility values, and solubility units. Additionally, we explore a novel pretraining approach that leverages automated chemical name and quantity extraction tools to generate large datasets that do not rely on intensive manual tagging. Finally, we perform an analysis to identify the causes of classification errors.
Large pretrained models have seen enormous success in extractive summarization tasks. In this work, we investigate the influence of pretraining on a BERT-based extractive summarization system for scientific documents. We derive significant performanc e improvements using an intermediate pretraining step that leverages existing summarization datasets and report state-of-the-art results on a recently released scientific summarization dataset, SciTLDR. We systematically analyze the intermediate pretraining step by varying the size and domain of the pretraining corpus, changing the length of the input sequence in the target task and varying target tasks. We also investigate how intermediate pretraining interacts with contextualized word embeddings trained on different domains.
Extracting keyphrases that summarize the main points of a document is a fundamental task in natural language processing. Supervised approaches to keyphrase extraction(KPE) are largely developed based on the assumption that the training data is fully annotated. However, due to the difficulty of keyphrase annotating, KPE models severely suffer from incomplete annotated problem in many scenarios. To this end, we propose a more robust training method that learns to mitigate the misguidance brought by unlabeled keyphrases. We introduce negative sampling to adjust training loss, and conduct experiments under different scenarios. Empirical studies on synthetic datasets and open domain dataset show that our model is robust to incomplete annotated problem and surpasses prior baselines. Extensive experiments on five scientific domain datasets of different scales demonstrate that our model is competitive with the state-of-the-art method.
Automatic summarization aims to extract important information from large amounts of textual data in order to create a shorter version of the original texts while preserving its information. Training traditional extractive summarization models relies heavily on human-engineered labels such as sentence-level annotations of summary-worthiness. However, in many use cases, such human-engineered labels do not exist and manually annotating thousands of documents for the purpose of training models may not be feasible. On the other hand, indirect signals for summarization are often available, such as agent actions for customer service dialogues, headlines for news articles, diagnosis for Electronic Health Records, etc. In this paper, we develop a general framework that generates extractive summarization as a byproduct of supervised learning tasks for indirect signals via the help of attention mechanism. We test our models on customer service dialogues and experimental results demonstrated that our models can reliably select informative sentences and words for automatic summarization.
Keyword or keyphrase extraction is to identify words or phrases presenting the main topics of a document. This paper proposes the AttentionRank, a hybrid attention model, to identify keyphrases from a document in an unsupervised manner. AttentionRank calculates self-attention and cross-attention using a pre-trained language model. The self-attention is designed to determine the importance of a candidate within the context of a sentence. The cross-attention is calculated to identify the semantic relevance between a candidate and sentences within a document. We evaluate the AttentionRank on three publicly available datasets against seven baselines. The results show that the AttentionRank is an effective and robust unsupervised keyphrase extraction model on both long and short documents. Source code is available on Github.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا