تعتمد العديد من مقاييس تقييم الترجمة الآلية الحديثة مثل Bertscore، Bleurt، Comet، Monotransquest أو xmovercore على نماذج لغة Black-Box.وبالتالي، من الصعب شرح سبب إرجاع هذه المقاييس درجات معينة.تعالج المهمة المشتركة Eval4NLP لهذا العام هذا التحدي من خلال البحث عن طرق يمكن استخراجها من الدرجات ذات الأهمية التي ترتبط بشكل جيد مع التعليقات التوضيحية خطأ على مستوى الكلمات البشرية.في هذه الورقة نظهر أن المقاييس غير المزدئة التي تستند إلى TokenMatching يمكن أن توفر جوهرية مثل هذه الدرجات.يفسر النظام المقدم على أوجه التشابه في تضمين الكلمات السياقية المستخدمة لحساب (x) BertScore كأهمية ذات أهمية على مستوى الكلمة.
Many modern machine translation evaluation metrics like BERTScore, BLEURT, COMET, MonoTransquest or XMoverScore are based on black-box language models. Hence, it is difficult to explain why these metrics return certain scores. This year's Eval4NLP shared task tackles this challenge by searching for methods that can extract feature importance scores that correlate well with human word-level error annotations. In this paper we show that unsupervised metrics that are based on tokenmatching can intrinsically provide such scores. The submitted system interprets the similarities of the contextualized word-embeddings that are used to compute (X)BERTScore as word-level importance scores.
References used
https://aclanthology.org/
Reference-free evaluation has the potential to make machine translation evaluation substantially more scalable, allowing us to pivot easily to new languages or domains. It has been recently shown that the probabilities given by a large, multilingual
Natural Language Generation (NLG) evaluation is a multifaceted task requiring assessment of multiple desirable criteria, e.g., fluency, coherency, coverage, relevance, adequacy, overall quality, etc. Across existing datasets for 6 NLG tasks, we obser
Image captioning has conventionally relied on reference-based automatic evaluations, where machine captions are compared against captions written by humans. This is in contrast to the reference-free manner in which humans assess caption quality. In t
Keyword extraction is the task of identifying words (or multi-word expressions) that best describe a given document and serve in news portals to link articles of similar topics. In this work, we develop and evaluate our methods on four novel data set
This paper presents the results of the WMT21 Metrics Shared Task. Participants were asked to score the outputs of the translation systems competing in the WMT21 News Translation Task with automatic metrics on two different domains: news and TED talks