Do you want to publish a course? Click here

Secoco: Self-Correcting Encoding for Neural Machine Translation

SECOCO: ترميز تصحيح ذاتي للترجمة الآلية العصبية

347   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents Self-correcting Encoding (Secoco), a framework that effectively deals with noisy input for robust neural machine translation by introducing self-correcting predictors. Different from previous robust approaches, Secoco enables NMT to explicitly correct noisy inputs and delete specific errors simultaneously with the translation decoding process. Secoco is able to achieve significant improvements over strong baselines on two real-world test sets and a benchmark WMT dataset with good interpretability. We will make our code and dataset publicly available soon.



References used
https://aclanthology.org/
rate research

Read More

It has been widely recognized that syntax information can help end-to-end neural machine translation (NMT) systems to achieve better translation. In order to integrate dependency information into Transformer based NMT, existing approaches either expl oit words' local head-dependent relations, ignoring their non-local neighbors carrying important context; or approximate two words' syntactic relation by their relative distance on the dependency tree, sacrificing exactness. To address these issues, we propose global positional encoding for dependency tree, a new scheme that facilitates syntactic relation modeling between any two words with keeping exactness and without immediate neighbor constraint. Experiment results on NC11 German→English, English→German and WMT English→German datasets show that our approach is more effective than the above two strategies. In addition, our experiments quantitatively show that compared with higher layers, lower layers of the model are more proper places to incorporate syntax information in terms of each layer's preference to the syntactic pattern and the final performance.
In supervised learning, a well-trained model should be able to recover ground truth accurately, i.e. the predicted labels are expected to resemble the ground truth labels as much as possible. Inspired by this, we formulate a difficulty criterion base d on the recovery degrees of training examples. Motivated by the intuition that after skimming through the training corpus, the neural machine translation (NMT) model knows'' how to schedule a suitable curriculum according to learning difficulty, we propose a self-guided curriculum learning strategy that encourages the NMT model to learn from easy to hard on the basis of recovery degrees. Specifically, we adopt sentence-level BLEU score as the proxy of recovery degree. Experimental results on translation benchmarks including WMT14 English-German and WMT17 Chinese-English demonstrate that our proposed method considerably improves the recovery degree, thus consistently improving the translation performance.
Neural machine translation (NMT) models are data-driven and require large-scale training corpus. In practical applications, NMT models are usually trained on a general domain corpus and then fine-tuned by continuing training on the in-domain corpus. However, this bears the risk of catastrophic forgetting that the performance on the general domain is decreased drastically. In this work, we propose a new continual learning framework for NMT models. We consider a scenario where the training is comprised of multiple stages and propose a dynamic knowledge distillation technique to alleviate the problem of catastrophic forgetting systematically. We also find that the bias exists in the output linear projection when fine-tuning on the in-domain corpus, and propose a bias-correction module to eliminate the bias. We conduct experiments on three representative settings of NMT application. Experimental results show that the proposed method achieves superior performance compared to baseline models in all settings.
Recent research questions the importance of the dot-product self-attention in Transformer models and shows that most attention heads learn simple positional patterns. In this paper, we push further in this research line and propose a novel substitute mechanism for self-attention: Recurrent AtteNtion (RAN) . RAN directly learns attention weights without any token-to-token interaction and further improves their capacity by layer-to-layer interaction. Across an extensive set of experiments on 10 machine translation tasks, we find that RAN models are competitive and outperform their Transformer counterpart in certain scenarios, with fewer parameters and inference time. Particularly, when apply RAN to the decoder of Transformer, there brings consistent improvements by about +0.5 BLEU on 6 translation tasks and +1.0 BLEU on Turkish-English translation task. In addition, we conduct extensive analysis on the attention weights of RAN to confirm their reasonableness. Our RAN is a promising alternative to build more effective and efficient NMT models.
Most current neural machine translation models adopt a monotonic decoding order of either left-to-right or right-to-left. In this work, we propose a novel method that breaks up the limitation of these decoding orders, called Smart-Start decoding. Mor e specifically, our method first predicts a median word. It starts to decode the words on the right side of the median word and then generates words on the left. We evaluate the proposed Smart-Start decoding method on three datasets. Experimental results show that the proposed method can significantly outperform strong baseline models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا