Do you want to publish a course? Click here

Gated Transformer for Robust De-noised Sequence-to-Sequence Modelling

محول بوابات لنمذجة التسلسل المتوسطة القوية

294   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Robust sequence-to-sequence modelling is an essential task in the real world where the inputs are often noisy. Both user-generated and machine generated inputs contain various kinds of noises in the form of spelling mistakes, grammatical errors, character recognition errors, all of which impact downstream tasks and affect interpretability of texts. In this work, we devise a novel sequence-to-sequence architecture for detecting and correcting different real world and artificial noises (adversarial attacks) from English texts. Towards that we propose a modified Transformer-based encoder-decoder architecture that uses a gating mechanism to detect types of corrections required and accordingly corrects texts. Experimental results show that our gated architecture with pre-trained language models perform significantly better that the non-gated counterparts and other state-of-the-art error correction models in correcting spelling and grammatical errors. Extrinsic evaluation of our model on Machine Translation (MT) and Summarization tasks show the competitive performance of the model against other generative sequence-to-sequence models under noisy inputs.



References used
https://aclanthology.org/
rate research

Read More

Complex natural language applications such as speech translation or pivot translation traditionally rely on cascaded models. However,cascaded models are known to be prone to error propagation and model discrepancy problems. Furthermore, there is no p ossibility of using end-to-end training data in conventional cascaded systems, meaning that the training data most suited for the task cannot be used.Previous studies suggested several approaches for integrated end-to-end training to overcome those problems, however they mostly rely on(synthetic or natural) three-way data. We propose a cascaded model based on the non-autoregressive Transformer that enables end-to-end training without the need for an explicit intermediate representation. This new architecture (i) avoids unnecessary early decisions that can cause errors which are then propagated throughout the cascaded models and (ii) utilizes the end-to-end training data directly. We conduct an evaluation on two pivot-based machine translation tasks, namely French→German and German→Czech. Our experimental results show that the proposed architecture yields an improvement of more than 2 BLEU for French→German over the cascaded baseline.
Scripts capture commonsense knowledge about everyday activities and their participants. Script knowledge proved useful in a number of NLP tasks, such as referent prediction, discourse classification, and story generation. A crucial step for the explo itation of script knowledge is script parsing, the task of tagging a text with the events and participants from a certain activity. This task is challenging: it requires information both about the ways events and participants are usually uttered in surface language as well as the order in which they occur in the world. We show how to do accurate script parsing with a hierarchical sequence model and transfer learning. Our model improves the state of the art of event parsing by over 16 points F-score and, for the first time, accurately tags script participants.
Natural language (NL) explanations of model predictions are gaining popularity as a means to understand and verify decisions made by large black-box pre-trained models, for tasks such as Question Answering (QA) and Fact Verification. Recently, pre-tr ained sequence to sequence (seq2seq) models have proven to be very effective in jointly making predictions, as well as generating NL explanations. However, these models have many shortcomings; they can fabricate explanations even for incorrect predictions, they are difficult to adapt to long input documents, and their training requires a large amount of labeled data. In this paper, we develop FiD-Ex, which addresses these shortcomings for seq2seq models by: 1) introducing sentence markers to eliminate explanation fabrication by encouraging extractive generation, 2) using the fusion-in-decoder architecture to handle long input contexts, and 3) intermediate fine-tuning on re-structured open domain QA datasets to improve few-shot performance. FiD-Ex significantly improves over prior work in terms of explanation metrics and task accuracy on five tasks from the ERASER explainability benchmark in both fully supervised and few-shot settings.
Sequence-to-sequence models have been applied to a wide variety of NLP tasks, but how to properly use them for dialogue state tracking has not been systematically investigated. In this paper, we study this problem from the perspectives of pre-trainin g objectives as well as the formats of context representations. We demonstrate that the choice of pre-training objective makes a significant difference to the state tracking quality. In particular, we find that masked span prediction is more effective than auto-regressive language modeling. We also explore using Pegasus, a span prediction-based pre-training objective for text summarization, for the state tracking model. We found that pre-training for the seemingly distant summarization task works surprisingly well for dialogue state tracking. In addition, we found that while recurrent state context representation works also reasonably well, the model may have a hard time recovering from earlier mistakes. We conducted experiments on the MultiWOZ 2.1-2.4, WOZ 2.0, and DSTC2 datasets with consistent observations.
The task of converting a nonstandard text to a standard and readable text is known as lexical normalization. Almost all the Natural Language Processing (NLP) applications require the text data in normalized form to build quality task-specific models. Hence, lexical normalization has been proven to improve the performance of numerous natural language processing tasks on social media. This study aims to solve the problem of Lexical Normalization by formulating the Lexical Normalization task as a Sequence Labeling problem. This paper proposes a sequence labeling approach to solve the problem of Lexical Normalization in combination with the word-alignment technique. The goal is to use a single model to normalize text in various languages namely Croatian, Danish, Dutch, English, Indonesian-English, German, Italian, Serbian, Slovenian, Spanish, Turkish, and Turkish-German. This is a shared task in 2021 The 7th Workshop on Noisy User-generated Text (W-NUT)'' in which the participants are expected to create a system/model that performs lexical normalization, which is the translation of non-canonical texts into their canonical equivalents, comprising data from over 12 languages. The proposed single multilingual model achieves an overall ERR score of 43.75 on intrinsic evaluation and an overall Labeled Attachment Score (LAS) score of 63.12 on extrinsic evaluation. Further, the proposed method achieves the highest Error Reduction Rate (ERR) score of 61.33 among the participants in the shared task. This study highlights the effects of using additional training data to get better results as well as using a pre-trained Language model trained on multiple languages rather than only on one language.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا