Do you want to publish a course? Click here

Effective Sequence-to-Sequence Dialogue State Tracking

تتبع حالة الحوار التسلسل الفعال

283   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Sequence-to-sequence models have been applied to a wide variety of NLP tasks, but how to properly use them for dialogue state tracking has not been systematically investigated. In this paper, we study this problem from the perspectives of pre-training objectives as well as the formats of context representations. We demonstrate that the choice of pre-training objective makes a significant difference to the state tracking quality. In particular, we find that masked span prediction is more effective than auto-regressive language modeling. We also explore using Pegasus, a span prediction-based pre-training objective for text summarization, for the state tracking model. We found that pre-training for the seemingly distant summarization task works surprisingly well for dialogue state tracking. In addition, we found that while recurrent state context representation works also reasonably well, the model may have a hard time recovering from earlier mistakes. We conducted experiments on the MultiWOZ 2.1-2.4, WOZ 2.0, and DSTC2 datasets with consistent observations.



References used
https://aclanthology.org/
rate research

Read More

Abstract Tracking dialogue states to better interpret user goals and feed downstream policy learning is a bottleneck in dialogue management. Common practice has been to treat it as a problem of classifying dialogue content into a set of pre-defined s lot-value pairs, or generating values for different slots given the dialogue history. Both have limitations on considering dependencies that occur on dialogues, and are lacking of reasoning capabilities. This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data. Empirical results demonstrate that our method outperforms the state-of-the-art methods in terms of joint belief accuracy for MultiWOZ 2.1, a large-scale human--human dialogue dataset across multiple domains.
Zero-shot transfer learning for dialogue state tracking (DST) enables us to handle a variety of task-oriented dialogue domains without the expense of collecting in-domain data. In this work, we propose to transfer the cross-task knowledge from genera l question answering (QA) corpora for the zero-shot DST task. Specifically, we propose TransferQA, a transferable generative QA model that seamlessly combines extractive QA and multi-choice QA via a text-to-text transformer framework, and tracks both categorical slots and non-categorical slots in DST. In addition, we introduce two effective ways to construct unanswerable questions, namely, negative question sampling and context truncation, which enable our model to handle none value slots in the zero-shot DST setting. The extensive experiments show that our approaches substantially improve the existing zero-shot and few-shot results on MultiWoz. Moreover, compared to the fully trained baseline on the Schema-Guided Dialogue dataset, our approach shows better generalization ability in unseen domains.
Dialogue state tracking models play an important role in a task-oriented dialogue system. However, most of them model the slot types conditionally independently given the input. We discover that it may cause the model to be confused by slot types tha t share the same data type. To mitigate this issue, we propose TripPy-MRF and TripPy-LSTM that models the slots jointly. Our results show that they are able to alleviate the confusion mentioned above, and they push the state-of-the-art on dataset MultiWoz 2.1 from 58.7 to 61.3.
This paper aims at providing a comprehensive overview of recent developments in dialogue state tracking (DST) for task-oriented conversational systems. We introduce the task, the main datasets that have been exploited as well as their evaluation metr ics, and we analyze several proposed approaches. We distinguish between static ontology DST models, which predict a fixed set of dialogue states, and dynamic ontology models, which can predict dialogue states even when the ontology changes. We also discuss the model's ability to track either single or multiple domains and to scale to new domains, both in terms of knowledge transfer and zero-shot learning. We cover a period from 2013 to 2020, showing a significant increase of multiple domain methods, most of them utilizing pre-trained language models.
Recently, the focus of dialogue state tracking has expanded from single domain to multiple domains. The task is characterized by the shared slots between domains. As the scenario gets more complex, the out-of-vocabulary problem also becomes severer. Current models are not satisfactory for solving the challenges of ontology integration between domains and out-of-vocabulary problems. To address the problem, we explore the hierarchical semantic of ontology and enhance the interrelation between slots with masked hierarchical attention. In state value decoding stage, we solve the out-of-vocabulary problem by combining generation method and extraction method together. We evaluate the performance of our model on two representative datasets, MultiWOZ in English and CrossWOZ in Chinese. The results show that our model yields a significant performance gain over current state-of-the-art state tracking model and it is more robust to out-of-vocabulary problem compared with other methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا