Do you want to publish a course? Click here

APGN: Adversarial and Parameter Generation Networks for Multi-Source Cross-Domain Dependency Parsing

APGN: شبكات توليد الخصومة والمعلمة لتخليص التبعية المتعدد المصدر

230   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Thanks to the strong representation learning capability of deep learning, especially pre-training techniques with language model loss, dependency parsing has achieved great performance boost in the in-domain scenario with abundant labeled training data for target domains. However, the parsing community has to face the more realistic setting where the parsing performance drops drastically when labeled data only exists for several fixed out-domains. In this work, we propose a novel model for multi-source cross-domain dependency parsing. The model consists of two components, i.e., a parameter generation network for distinguishing domain-specific features, and an adversarial network for learning domain-invariant representations. Experiments on a recently released NLPCC-2019 dataset for multi-domain dependency parsing show that our model can consistently improve cross-domain parsing performance by about 2 points in averaged labeled attachment accuracy (LAS) over strong BERT-enhanced baselines. Detailed analysis is conducted to gain more insights on contributions of the two components.



References used
https://aclanthology.org/
rate research

Read More

Manually annotating a treebank is time-consuming and labor-intensive. We conduct delexicalized cross-lingual dependency parsing experiments, where we train the parser on one language and test on our target language. As our test case, we use Xibe, a s everely under-resourced Tungusic language. We assume that choosing a closely related language as the source language will provide better results than more distant relatives. However, it is not clear how to determine those closely related languages. We investigate three different methods: choosing the typologically closest language, using LangRank, and choosing the most similar language based on perplexity. We train parsing models on the selected languages using UDify and test on different genres of Xibe data. The results show that languages selected based on typology and perplexity scores outperform those predicted by LangRank; Japanese is the optimal source language. In determining the source language, proximity to the target language is more important than large training sizes. Parsing is also influenced by genre differences, but they have little influence as long as the training data is at least as complex as the target.
Recent work has shown that monolingual masked language models learn to represent data-driven notions of language variation which can be used for domain-targeted training data selection. Dataset genre labels are already frequently available, yet remai n largely unexplored in cross-lingual setups. We harness this genre metadata as a weak supervision signal for targeted data selection in zero-shot dependency parsing. Specifically, we project treebank-level genre information to the finer-grained sentence level, with the goal to amplify information implicitly stored in unsupervised contextualized representations. We demonstrate that genre is recoverable from multilingual contextual embeddings and that it provides an effective signal for training data selection in cross-lingual, zero-shot scenarios. For 12 low-resource language treebanks, six of which are test-only, our genre-specific methods significantly outperform competitive baselines as well as recent embedding-based methods for data selection. Moreover, genre-based data selection provides new state-of-the-art results for three of these target languages.
We propose the Recursive Non-autoregressive Graph-to-Graph Transformer architecture (RNGTr) for the iterative refinement of arbitrary graphs through the recursive application of a non-autoregressive Graph-to-Graph Transformer and apply it to syntacti c dependency parsing. We demonstrate the power and effectiveness of RNGTr on several dependency corpora, using a refinement model pre-trained with BERT. We also introduce Syntactic Transformer (SynTr), a non-recursive parser similar to our refinement model. RNGTr can improve the accuracy of a variety of initial parsers on 13 languages from the Universal Dependencies Treebanks, English and Chinese Penn Treebanks, and the German CoNLL2009 corpus, even improving over the new state-of-the-art results achieved by SynTr, significantly improving the state-of-the-art for all corpora tested.
Unsupervised cross-domain dependency parsing is to accomplish domain adaptation for dependency parsing without using labeled data in target domain. Existing methods are often of the pseudo-annotation type, which generates data through self-annotation of the base model and performing iterative training. However, these methods fail to consider the change of model structure for domain adaptation. In addition, the structural information contained in the text cannot be fully exploited. To remedy these drawbacks, we propose a Semantics-Structure Adaptative Dependency Parser (SSADP), which accomplishes unsupervised cross-domain dependency parsing without relying on pseudo-annotation or data selection. In particular, we design two feature extractors to extract semantic and structural features respectively. For each type of features, a corresponding feature adaptation method is utilized to achieve domain adaptation to align the domain distribution, which effectively enhances the unsupervised cross-domain transfer capability of the model. We validate the effectiveness of our model by conducting experiments on the CODT1 and CTB9 respectively, and the results demonstrate that our model can achieve consistent performance improvement. Besides, we verify the structure transfer ability of the proposed model by introducing Weisfeiler-Lehman Test.
Despite achieving remarkable performance, previous knowledge-enhanced works usually only use a single-source homogeneous knowledge base of limited knowledge coverage. Thus, they often degenerate into traditional methods because not all dialogues can be linked with knowledge entries. This paper proposes a novel dialogue generation model, MSKE-Dialog, to solve this issue with three unique advantages: (1) Rather than only one, MSKE-Dialog can simultaneously leverage multiple heterogeneous knowledge sources (it includes but is not limited to commonsense knowledge facts, text knowledge, infobox knowledge) to improve the knowledge coverage; (2) To avoid the topic conflict among the context and different knowledge sources, we propose a Multi-Reference Selection to better select context/knowledge; (3) We propose a Multi-Reference Generation to generate informative responses by referring to multiple generation references at the same time. Extensive evaluations on a Chinese dataset show the superior performance of this work against various state-of-the-art approaches. To our best knowledge, this work is the first to use the multi-source heterogeneous knowledge in the open-domain knowledge-enhanced dialogue generation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا