Do you want to publish a course? Click here

Learning to Answer Psychological Questionnaire for Personality Detection

تعلم الإجابة الاستبيانة النفسية للكشف عن الشخصية

226   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Existing text-based personality detection research mostly relies on data-driven approaches to implicitly capture personality cues in online posts, lacking the guidance of psychological knowledge. Psychological questionnaire, which contains a series of dedicated questions highly related to personality traits, plays a critical role in self-report personality assessment. We argue that the posts created by a user contain critical contents that could help answer the questions in a questionnaire, resulting in an assessment of his personality by linking the texts and the questionnaire. To this end, we propose a new model named Psychological Questionnaire enhanced Network (PQ-Net) to guide personality detection by tracking critical information in texts with a questionnaire. Specifically, PQ-Net contains two streams: a context stream to encode each piece of text into a contextual text representation, and a questionnaire stream to capture relevant information in the contextual text representation to generate potential answer representations for a questionnaire. The potential answer representations are used to enhance the contextual text representation and to benefit personality prediction. Experimental results on two datasets demonstrate the superiority of PQ-Net in capturing useful cues from the posts for personality detection.



References used
https://aclanthology.org/
rate research

Read More

The problem of detecting psychological stress in online posts, and more broadly, of detecting people in distress or in need of help, is a sensitive application for which the ability to interpret models is vital. Here, we present work exploring the us e of a semantically related task, emotion detection, for equally competent but more explainable and human-like psychological stress detection as compared to a black-box model. In particular, we explore the use of multi-task learning as well as emotion-based language model fine-tuning. With our emotion-infused models, we see comparable results to state-of-the-art BERT. Our analysis of the words used for prediction show that our emotion-infused models mirror psychological components of stress.
In education, quiz questions have become an important tool for assessing the knowledge of students. Yet, manually preparing such questions is a tedious task, and thus automatic question generation has been proposed as a possible alternative. So far, the vast majority of research has focused on generating the question text, relying on question answering datasets with readily picked answers, and the problem of how to come up with answer candidates in the first place has been largely ignored. Here, we aim to bridge this gap. In particular, we propose a model that can generate a specified number of answer candidates for a given passage of text, which can then be used by instructors to write questions manually or can be passed as an input to automatic answer-aware question generators. Our experiments show that our proposed answer candidate generation model outperforms several baselines.
We address the task of automatic hate speech detection for low-resource languages. Rather than collecting and annotating new hate speech data, we show how to use cross-lingual transfer learning to leverage already existing data from higher-resource l anguages. Using bilingual word embeddings based classifiers we achieve good performance on the target language by training only on the source dataset. Using our transferred system we bootstrap on unlabeled target language data, improving the performance of standard cross-lingual transfer approaches. We use English as a high resource language and German as the target language for which only a small amount of annotated corpora are available. Our results indicate that cross-lingual transfer learning together with our approach to leverage additional unlabeled data is an effective way of achieving good performance on low-resource target languages without the need for any target-language annotations.
The evaluation of question answering models compares ground-truth annotations with model predictions. However, as of today, this comparison is mostly lexical-based and therefore misses out on answers that have no lexical overlap but are still semanti cally similar, thus treating correct answers as false. This underestimation of the true performance of models hinders user acceptance in applications and complicates a fair comparison of different models. Therefore, there is a need for an evaluation metric that is based on semantics instead of pure string similarity. In this short paper, we present SAS, a cross-encoder-based metric for the estimation of semantic answer similarity, and compare it to seven existing metrics. To this end, we create an English and a German three-way annotated evaluation dataset containing pairs of answers along with human judgment of their semantic similarity, which we release along with an implementation of the SAS metric and the experiments. We find that semantic similarity metrics based on recent transformer models correlate much better with human judgment than traditional lexical similarity metrics on our two newly created datasets and one dataset from related work.
We address the sampling bias and outlier issues in few-shot learning for event detection, a subtask of information extraction. We propose to model the relations between training tasks in episodic few-shot learning by introducing cross-task prototypes . We further propose to enforce prediction consistency among classifiers across tasks to make the model more robust to outliers. Our extensive experiment shows a consistent improvement on three few-shot learning datasets. The findings suggest that our model is more robust when labeled data of novel event types is limited. The source code is available at http://github.com/laiviet/fsl-proact.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا