تتطلب مربعات الحوار التوصية النظام لبناء رابطة اجتماعية مع المستخدمين للحصول على الثقة وتطوير تقارب من أجل زيادة فرصة توصية ناجحة. من المفيد تقسيم هذه المحادثات، مثل هذه المحادثات مع مجموعات متعددة (مثل الدردشة الاجتماعية، الإجابة على السؤال، والتوصية، وما إلى ذلك)، بحيث يمكن للنظام استرداد المعرفة المناسبة بدقة أفضل بموجب علمي مختلفين. في هذه الورقة، نقترح إطارا موحدا للحوار المشترك متعدد الهيئات المستندة إلى المعرفة: نظام التوصية المحسن المعزز للمعارف (KERS). نتنبأ أولا بتسلسل من الفئة الفرعية واستخدامها لتوجيه نموذج الحوار لتحديد المعرفة من مجموعة فرعية من الرسم البياني المعرفي الحالي. ثم نقترح ثلاث آليات جديدة لتصفية المعرفة الصاخبة وتعزيز إدراج المعرفة التي تنظيفها في عملية توليد استجابة الحوار. تظهر التجارب أن طريقتنا تحصل على نتائج حديثة على مجموعة بيانات Dreecdial في كل من التقييم التلقائي والبشري.
Recommendation dialogs require the system to build a social bond with users to gain trust and develop affinity in order to increase the chance of a successful recommendation. It is beneficial to divide up, such conversations with multiple subgoals (such as social chat, question answering, recommendation, etc.), so that the system can retrieve appropriate knowledge with better accuracy under different subgoals. In this paper, we propose a unified framework for common knowledge-based multi-subgoal dialog: knowledge-enhanced multi-subgoal driven recommender system (KERS). We first predict a sequence of subgoals and use them to guide the dialog model to select knowledge from a sub-set of existing knowledge graph. We then propose three new mechanisms to filter noisy knowledge and to enhance the inclusion of cleaned knowledge in the dialog response generation process. Experiments show that our method obtains state-of-the-art results on DuRecDial dataset in both automatic and human evaluation.
References used
https://aclanthology.org/
In goal-oriented dialogue systems, users provide information through slot values to achieve specific goals. Practically, some combinations of slot values can be invalid according to external knowledge. For example, a combination of cheese pizza'' (a
In this work we leverage commonsense knowledge in form of knowledge paths to establish connections between sentences, as a form of explicitation of implicit knowledge. Such connections can be direct (singlehop paths) or require intermediate concepts
Most reinforcement learning methods for dialog policy learning train a centralized agent that selects a predefined joint action concatenating domain name, intent type, and slot name. The centralized dialog agent suffers from a great many user-agent i
Visual dialog is a task of answering a sequence of questions grounded in an image using the previous dialog history as context. In this paper, we study how to address two fundamental challenges for this task: (1) reasoning over underlying semantic st
With the advent of contextualized embeddings, attention towards neural ranking approaches for Information Retrieval increased considerably. However, two aspects have remained largely neglected: i) queries usually consist of few keywords only, which i