في تجربة حالية، كنا نقوم باختبار DataSet Commongen للمهمة الهيكلية إلى النص من GEM Living Benchmark مع نموذج مؤشر القيد القائم.يمثل المؤشر هندسة هجينة، والجمع بين النماذج القائمة على الإدراج والمحول، والتنبؤ بالكمية وموقع الإدراج في نفس الوقت.لذلك يتم إنشاء النص تدريجيا بطريقة غير متوازية غير تلقائية، بالنظر إلى مجموعة الكلمات الرئيسية.كان النموذج المحدد ضبطه بشكل جيد على تقسيم تدريب لمجموعة بيانات Commungen وتم مقارنة نتيجة الجيل بالتحقق من الصحة والتحدي.تتم مناقشة مخرجات المقاييس المستلمة، والتي تقيس المعادلات المعجمية، التشابه الدلالي والتنوع، في التفاصيل في وصف النظام الحالي.
In a current experiment we were testing CommonGen dataset for structure-to-text task from GEM living benchmark with the constraint based POINTER model. POINTER represents a hybrid architecture, combining insertion-based and transformer paradigms, predicting the token and the insertion position at the same time. The text is therefore generated gradually in a parallel non-autoregressive manner, given the set of keywords. The pretrained model was fine-tuned on a training split of the CommonGen dataset and the generation result was compared to the validation and challenge splits. The received metrics outputs, which measure lexical equivalence, semantic similarity and diversity, are discussed in details in a present system description.
References used
https://aclanthology.org/
This paper discusses the WMT 2021 terminology shared task from a meta'' perspective. We present the results of our experiments using the terminology dataset and the OpenNMT (Klein et al., 2017) and JoeyNMT (Kreutzer et al., 2019) toolkits for the lan
Neural Machine Translation (NMT) is a predominant machine translation technology nowadays because of its end-to-end trainable flexibility. However, NMT still struggles to translate properly in low-resource settings specifically on distant language pa
Abstract Meaning Representation parsing is a sentence-to-graph prediction task where target nodes are not explicitly aligned to sentence tokens. However, since graph nodes are semantically based on one or more sentence tokens, implicit alignments can
This shared task system description depicts two neural network architectures submitted to the ProfNER track, among them the winning system that scored highest in the two sub-tasks 7a and 7b. We present in detail the approach, preprocessing steps and
In this paper, we introduce our TMU Neural Machine Translation (NMT) system submitted for the Patent task (Korean Japanese and English Japanese) of 8th Workshop on Asian Translation (Nakazawa et al., 2021). Recently, several studies proposed pre-trai