Do you want to publish a course? Click here

System Description for the CommonGen task with the POINTER model

وصف النظام لمهمة commongen مع نموذج المؤشر

301   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In a current experiment we were testing CommonGen dataset for structure-to-text task from GEM living benchmark with the constraint based POINTER model. POINTER represents a hybrid architecture, combining insertion-based and transformer paradigms, predicting the token and the insertion position at the same time. The text is therefore generated gradually in a parallel non-autoregressive manner, given the set of keywords. The pretrained model was fine-tuned on a training split of the CommonGen dataset and the generation result was compared to the validation and challenge splits. The received metrics outputs, which measure lexical equivalence, semantic similarity and diversity, are discussed in details in a present system description.



References used
https://aclanthology.org/
rate research

Read More

This paper discusses the WMT 2021 terminology shared task from a meta'' perspective. We present the results of our experiments using the terminology dataset and the OpenNMT (Klein et al., 2017) and JoeyNMT (Kreutzer et al., 2019) toolkits for the lan guage direction English to French. Our experiment 1 compares the predictions of the two toolkits. Experiment 2 uses OpenNMT to fine-tune the model. We report our results for the task with the evaluation script but mostly discuss the linguistic properties of the terminology dataset provided for the task. We provide evidence of the importance of text genres across scores, having replicated the evaluation scripts.
Neural Machine Translation (NMT) is a predominant machine translation technology nowadays because of its end-to-end trainable flexibility. However, NMT still struggles to translate properly in low-resource settings specifically on distant language pa irs. One way to overcome this is to use the information from other modalities if available. The idea is that despite differences in languages, both the source and target language speakers see the same thing and the visual representation of both the source and target is the same, which can positively assist the system. Multimodal information can help the NMT system to improve the translation by removing ambiguity on some phrases or words. We participate in the 8th Workshop on Asian Translation (WAT - 2021) for English-Hindi multimodal translation task and achieve 42.47 and 37.50 BLEU points for Evaluation and Challenge subset, respectively.
Abstract Meaning Representation parsing is a sentence-to-graph prediction task where target nodes are not explicitly aligned to sentence tokens. However, since graph nodes are semantically based on one or more sentence tokens, implicit alignments can be derived. Transition-based parsers operate over the sentence from left to right, capturing this inductive bias via alignments at the cost of limited expressiveness. In this work, we propose a transition-based system that combines hard-attention over sentences with a target-side action pointer mechanism to decouple source tokens from node representations and address alignments. We model the transitions as well as the pointer mechanism through straightforward modifications within a single Transformer architecture. Parser state and graph structure information are efficiently encoded using attention heads. We show that our action-pointer approach leads to increased expressiveness and attains large gains (+1.6 points) against the best transition-based AMR parser in very similar conditions. While using no graph re-categorization, our single model yields the second best Smatch score on AMR 2.0 (81.8), which is further improved to 83.4 with silver data and ensemble decoding.
This shared task system description depicts two neural network architectures submitted to the ProfNER track, among them the winning system that scored highest in the two sub-tasks 7a and 7b. We present in detail the approach, preprocessing steps and the architectures used to achieve the submitted results, and also provide a GitHub repository to reproduce the scores. The winning system is based on a transformer-based pretrained language model and solves the two sub-tasks simultaneously.
In this paper, we introduce our TMU Neural Machine Translation (NMT) system submitted for the Patent task (Korean Japanese and English Japanese) of 8th Workshop on Asian Translation (Nakazawa et al., 2021). Recently, several studies proposed pre-trai ned encoder-decoder models using monolingual data. One of the pre-trained models, BART (Lewis et al., 2020), was shown to improve translation accuracy via fine-tuning with bilingual data. However, they experimented only Romanian!English translation using English BART. In this paper, we examine the effectiveness of Japanese BART using Japan Patent Office Corpus 2.0. Our experiments indicate that Japanese BART can also improve translation accuracy in both Korean Japanese and English Japanese translations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا