Do you want to publish a course? Click here

Situation-Specific Multimodal Feature Adaptation

تكييف ميزة متعددة الوسائط الموحدة

313   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In the next decade, we will see a considerable need for NLP models for situated settings where diversity of situations and also different modalities including eye-movements should be taken into account in order to grasp the intention of the user. However, language comprehension in situated settings can not be handled in isolation, where different multimodal cues are inherently present and essential parts of the situations. In this research proposal, we aim to quantify the influence of each modality in interaction with various referential complexities. We propose to encode the referential complexity of the situated settings in the embeddings during pre-training to implicitly guide the model to the most plausible situation-specific deviations. We summarize the challenges of intention extraction and propose a methodological approach to investigate a situation-specific feature adaptation to improve crossmodal mapping and meaning recovery from noisy communication settings.

References used
https://aclanthology.org/
rate research

Read More

Multimodal research has picked up significantly in the space of question answering with the task being extended to visual question answering, charts question answering as well as multimodal input question answering. However, all these explorations pr oduce a unimodal textual output as the answer. In this paper, we propose a novel task - MIMOQA - Multimodal Input Multimodal Output Question Answering in which the output is also multimodal. Through human experiments, we empirically show that such multimodal outputs provide better cognitive understanding of the answers. We also propose a novel multimodal question-answering framework, MExBERT, that incorporates a joint textual and visual attention towards producing such a multimodal output. Our method relies on a novel multimodal dataset curated for this problem from publicly available unimodal datasets. We show the superior performance of MExBERT against strong baselines on both the automatic as well as human metrics.
Multimodal Neural Machine Translation (MNMT) is an interesting task in natural language processing (NLP) where we use visual modalities along with a source sentence to aid the source to target translation process. Recently, there has been a lot of wo rks in MNMT frameworks to boost the performance of standalone Machine Translation tasks. Most of the prior works in MNMT tried to perform translation between two widely known languages (e.g. English-to-German, English-to-French ). In this paper, We explore the effectiveness of different state-of-the-art MNMT methods, which use various data oriented techniques including multimodal pre-training, for low resource languages. Although the existing methods works well on high resource languages, usability of those methods on low-resource languages is unknown. In this paper, we evaluate the existing methods on Hindi and report our findings.
Human language encompasses more than just text; it also conveys emotions through tone and gestures. We present a case study of three simple and efficient Transformer-based architectures for predicting sentiment and emotion in multimodal data. The Lat e Fusion model merges unimodal features to create a multimodal feature sequence, the Round Robin model iteratively combines bimodal features using cross-modal attention, and the Hybrid Fusion model combines trimodal and unimodal features together to form a final feature sequence for predicting sentiment. Our experiments show that our small models are effective and outperform the publicly released versions of much larger, state-of-the-art multimodal sentiment analysis systems.
We introduce our TMEKU system submitted to the English-Japanese Multimodal Translation Task for WAT 2021. We participated in the Flickr30kEnt-JP task and Ambiguous MSCOCO Multimodal task under the constrained condition using only the officially provi ded datasets. Our proposed system employs soft alignment of word-region for multimodal neural machine translation (MNMT). The experimental results evaluated on the BLEU metric provided by the WAT 2021 evaluation site show that the TMEKU system has achieved the best performance among all the participated systems. Further analysis of the case study demonstrates that leveraging word-region alignment between the textual and visual modalities is the key to performance enhancement in our TMEKU system, which leads to better visual information use.
It has been shown that named entity recognition (NER) could benefit from incorporating the long-distance structured information captured by dependency trees. We believe this is because both types of features - the contextual information captured by t he linear sequences and the structured information captured by the dependency trees may complement each other. However, existing approaches largely focused on stacking the LSTM and graph neural networks such as graph convolutional networks (GCNs) for building improved NER models, where the exact interaction mechanism between the two types of features is not very clear, and the performance gain does not appear to be significant. In this work, we propose a simple and robust solution to incorporate both types of features with our Synergized-LSTM (Syn-LSTM), which clearly captures how the two types of features interact. We conduct extensive experiments on several standard datasets across four languages. The results demonstrate that the proposed model achieves better performance than previous approaches while requiring fewer parameters. Our further analysis demonstrates that our model can capture longer dependencies compared with strong baselines.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا