في هذه المهمة المشتركة، نسعى إلى الفرق المشاركة للتحقيق في العوامل التي تؤثر على جودة أنظمة توليد النص المختلط من التعليمات البرمجية.نقوم بتوليد جمل هينجليشقة مختلطة من التعليمات البرمجية باستخدام نهجين متميزين وتوظفوا النواحي البشري لتقييم جودة الجيل.نقترحان اثنين من الترقيع، والتنبؤ بتصويت الجودة وتنبؤ الخلاف المعلقين في مجموعة بيانات الهنزيكية الاصطناعية.ستقدم التسكير الفرعي المقترح إلى إحالة المنطق والاضطرابات للعوامل التي تؤثر على الجودة والإدراك البشري للنص المزيج من التعليمات البرمجية.
In this shared task, we seek the participating teams to investigate the factors influencing the quality of the code-mixed text generation systems. We synthetically generate code-mixed Hinglish sentences using two distinct approaches and employ human annotators to rate the generation quality. We propose two subtasks, quality rating prediction and annotators' disagreement prediction of the synthetic Hinglish dataset. The proposed subtasks will put forward the reasoning and explanation of the factors influencing the quality and human perception of the code-mixed text.
References used
https://aclanthology.org/
Code-mixed language plays a crucial role in communication in multilingual societies. Though the recent growth of web users has greatly boosted the use of such mixed languages, the current generation of dialog systems is primarily monolingual. This in
We translate a closed text that is known in advance and available in many languages into a new and severely low resource language. Most human translation efforts adopt a portionbased approach to translate consecutive pages/chapters in order, which ma
A bigger is better'' explosion in the number of parameters in deep neural networks has made it increasingly challenging to make state-of-the-art networks accessible in compute-restricted environments. Compression techniques have taken on renewed impo
Text generation is a highly active area of research in the computational linguistic community. The evaluation of the generated text is a challenging task and multiple theories and metrics have been proposed over the years. Unfortunately, text generat
In this work, we investigate methods for the challenging task of translating between low- resource language pairs that exhibit some level of similarity. In particular, we consider the utility of transfer learning for translating between several Indo-