في هذه الورقة، نقيس التباين في تأطير كدالة للأصماد والخلفية في كائن مرجعي مشترك مع مجموعة من المسافة الزمنية.في نوع واحد من التجربة، تم تناقض تجميع سورانيا المشروح في الإطار بموجب أنواع الأحداث، مما يؤدي إلى تصنيف إطارات مع معدلات نموذجية.في المتناقض بين تواريخ النشر، ظهرت ترتيب مختلف للأطر الوثائق القريبة من مثيل الحدث أو بعيد عن مثيل الحدث.في النوع الثاني من التحليل، قامنا بتدريب مصنف تشخيصي مع حدوث إطار من أجل السماح له بالتمييز بين المستندات بناء على فئة المسافة الزمنية (بالقرب من مثيل الحدث أو بعيد.ينفذ المصنف فرصة أعلاه والنماذج المتفوقة بالكلمات.
In this paper, we measure variation in framing as a function of foregrounding and backgrounding in a co-referential corpus with a range of temporal distance. In one type of experiment, frame-annotated corpora grouped under event types were contrasted, resulting in a ranking of frames with typicality rates. In contrasting between publication dates, a different ranking of frames emerged for documents that are close to or far from the event instance. In the second type of analysis, we trained a diagnostic classifier with frame occurrences in order to let it differentiate documents based on their temporal distance class (close to or far from the event instance). The classifier performs above chance and outperforms models with words.
References used
https://aclanthology.org/
The framing of political issues can influence policy and public opinion. Even though the public plays a key role in creating and spreading frames, little is known about how ordinary people on social media frame political issues. By creating a new dat
Static knowledge graph (SKG) embedding (SKGE) has been studied intensively in the past years. Recently, temporal knowledge graph (TKG) embedding (TKGE) has emerged. In this paper, we propose a Recursive Temporal Fact Embedding (RTFE) framework to tra
Understanding how news media frame political issues is important due to its impact on public attitudes, yet hard to automate. Computational approaches have largely focused on classifying the frame of a full news article while framing signals are ofte
Despite the increasing popularity of NLP in the humanities and social sciences, advances in model performance and complexity have been accompanied by concerns about interpretability and explanatory power for sociocultural analysis. One popular model
Framing has significant but subtle effects on public opinion and policy. We propose an NLP framework to measure entity-centric frames. We use it to understand media coverage on police violence in the United States in a new Police Violence Frames Corp