تصف هذه الورقة N-XKT (الترميز العصبي بناء على نقل المعرفة التوضيحية)، وهي طريقة جديدة للتحويل التلقائي للمعرفة التوضيحية من خلال آليات الترميز العصبي.نوضح أن N-XKT قادر على تحسين الدقة والتعميم بشأن الإجابة على سؤال العلوم (QA).على وجه التحديد، من خلال الاستفادة من الحقائق من معرض المعرفة التوضيحية الخلفية، يظهر نموذج N-XKT تحسنا واضحا على QA صفر النار.علاوة على ذلك، نظهر أن N-XKT يمكن ضبطها بشكل جيد على مجموعة بيانات QA المستهدفة، مما يتيح التقارب الأسرع والنتائج الأكثر دقة.يتم إجراء تحليل منهجي لتحليل أداء نموذج N-XKT وتأثير فئات مختلفة من المعرفة حول مهمة تعميم الشوط الصفرية.
This paper describes N-XKT (Neural encoding based on eXplanatory Knowledge Transfer), a novel method for the automatic transfer of explanatory knowledge through neural encoding mechanisms. We demonstrate that N-XKT is able to improve accuracy and generalization on science Question Answering (QA). Specifically, by leveraging facts from background explanatory knowledge corpora, the N-XKT model shows a clear improvement on zero-shot QA. Furthermore, we show that N-XKT can be fine-tuned on a target QA dataset, enabling faster convergence and more accurate results. A systematic analysis is conducted to quantitatively analyze the performance of the N-XKT model and the impact of different categories of knowledge on the zero-shot generalization task.
References used
https://aclanthology.org/
Multilingual question answering over knowledge graph (KGQA) aims to derive answers from a knowledge graph (KG) for questions in multiple languages. To be widely applicable, we focus on its zero-shot transfer setting. That is, we can only access train
There has been a significant progress in the field of Extractive Question Answering (EQA) in the recent years. However, most of them are reliant on annotations of answer-spans in the corresponding passages. In this work, we address the problem of EQA
Coupled with the availability of large scale datasets, deep learning architectures have enabled rapid progress on the Question Answering task. However, most of those datasets are in English, and the performances of state-of-the-art multilingual model
Pretrained transformer-based encoders such as BERT have been demonstrated to achieve state-of-the-art performance on numerous NLP tasks. Despite their success, BERT style encoders are large in size and have high latency during inference (especially o
Most of the existing Knowledge-based Question Answering (KBQA) methods first learn to map the given question to a query graph, and then convert the graph to an executable query to find the answer. The query graph is typically expanded progressively f