Do you want to publish a course? Click here

EnKhCorp1.0: An English--Khasi Corpus

Enkhcorp1.0: الإنجليزية - خاسي كوربوس

231   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In machine translation, corpus preparation is one of the crucial tasks, particularly for lowresource pairs. In multilingual countries like India, machine translation plays a vital role in communication among people with various linguistic backgrounds. There are available online automatic translation systems by Google and Microsoft which include various languages which lack support for the Khasi language, which can hence be considered lowresource. This paper overviews the development of EnKhCorp1.0, a corpus for English--Khasi pair, and implemented baseline systems for EnglishtoKhasi and KhasitoEnglish translation based on the neural machine translation approach.



References used
https://aclanthology.org/
rate research

Read More

Unsupervised Machine Translation (MT) model, which has the ability to perform MT without parallel sentences using comparable corpora, is becoming a promising approach for developing MT in low-resource languages. However, majority of the studies in un supervised MT have considered resource-rich language pairs with similar linguistic characteristics. In this paper, we investigate the effectiveness of unsupervised MT models over a Manipuri-English comparable corpus. Manipuri is a low-resource language having different linguistic characteristics from that of English. This paper focuses on identifying challenges in building unsupervised MT models over the comparable corpus. From various experimental observations, it is evident that the development of MT over comparable corpus using unsupervised methods is feasible. Further, the paper also identifies future directions of developing effective MT for Manipuri-English language pair under unsupervised scenarios.
This is a research proposal for doctoral research into sarcasm detection, and the real-time compilation of an English language corpus of sarcastic utterances. It details the previous research into similar topics, the potential research directions and the research aims.
This work introduces Itihasa, a large-scale translation dataset containing 93,000 pairs of Sanskrit shlokas and their English translations. The shlokas are extracted from two Indian epics viz., The Ramayana and The Mahabharata. We first describe the motivation behind the curation of such a dataset and follow up with empirical analysis to bring out its nuances. We then benchmark the performance of standard translation models on this corpus and show that even state-of-the-art transformer architectures perform poorly, emphasizing the complexity of the dataset.
This paper describes the construction of a new large-scale English-Japanese Simultaneous Interpretation (SI) corpus and presents the results of its analysis. A portion of the corpus contains SI data from three interpreters with different amounts of e xperience. Some of the SI data were manually aligned with the source speeches at the sentence level. Their latency, quality, and word order aspects were compared among the SI data themselves as well as against offline translations. The results showed that (1) interpreters with more experience controlled the latency and quality better, and (2) large latency hurt the SI quality.
Automatic Text Summarization (ATS) is the task of generating concise and fluent summaries from one or more documents. In this paper, we present IceSum, the first Icelandic corpus annotated with human-generated summaries. IceSum consists of 1,000 onli ne news articles and their extractive summaries. We train and evaluate several neural network-based models on this dataset, comparing them against a selection of baseline methods. We find that an encoder-decoder model with a sequence-to-sequence based extractor obtains the best results, outperforming all baseline methods. Furthermore, we evaluate how the size of the training corpus affects the quality of the generated summaries. We release the corpus and the models with an open license.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا