في وضع الترجمة في الوقت الحقيقي للترجمة في الوقت الفعلي، تبدأ نماذج الترجمة الآلية العصبية (NMT) بتوليد الرموز الرموز اللغوية المستهدفة من جمل لغة مصدر غير كاملة وجعلها أكثر صعوبة في ترجمة وجودة الترجمة السيئة. أظهرت الأبحاث السابقة أن NMT على مستوى الوثيقة وتشمل الجملة والترميز السياق والكشف عن السياق من الجمل المجاورة ويساعد على تحسين جودة الترجمة. في إعدادات الترجمة المتزامنة، يجب أن يكون السياق من الجمل السابقة أكثر أهمية. تحقيقا لهذه الغاية وفي هذه الورقة، نقترح NMT على مستوى الوثيقة المتزامنة للانتظار حيث نحتفظ بمثابة تشفير السياق كما هو الحال واستبدال تشفير جملة المصدر ومكتشف اللغة المستهدف مع ما يعادله. نقوم بتجربة إعدادات الموارد المنخفضة والعالية باستخدام ALT و OPENSUBTITLES2018 Corpora وأين لاحظنا تحسينات طفيفة في جودة الترجمة. بعد ذلك إجراء تحليل للترجمات التي تم الحصول عليها باستخدام نماذجنا من خلال التركيز على الجمل التي يجب أن تستفيد من السياق حيث اكتشفنا أن النموذج يفعل وفي الواقع والاستفادة من السياق ولكنه غير قادر على الاستفادة من ذلك بشكل فعال وخاصة في انخفاض إعداد الموارد. هذا يدل على أن هناك حاجة لمزيد من الابتكار في طريقة تحديد السياق المفيد والاستفادة منها.
In a real-time simultaneous translation setting and neural machine translation (NMT) models start generating target language tokens from incomplete source language sentences and making them harder to translate and leading to poor translation quality. Previous research has shown that document-level NMT and comprising of sentence and context encoders and a decoder and leverages context from neighboring sentences and helps improve translation quality. In simultaneous translation settings and the context from previous sentences should be even more critical. To this end and in this paper and we propose wait-k simultaneous document-level NMT where we keep the context encoder as it is and replace the source sentence encoder and target language decoder with their wait-k equivalents. We experiment with low and high resource settings using the ALT and OpenSubtitles2018 corpora and where we observe minor improvements in translation quality. We then perform an analysis of the translations obtained using our models by focusing on sentences that should benefit from the context where we found out that the model does and in fact and benefit from context but is unable to effectively leverage it and especially in a low-resource setting. This shows that there is a need for further innovation in the way useful context is identified and leveraged.
References used
https://aclanthology.org/
In simultaneous machine translation, finding an agent with the optimal action sequence of reads and writes that maintain a high level of translation quality while minimizing the average lag in producing target tokens remains an extremely challenging
Recently a number of approaches have been proposed to improve translation performance for document-level neural machine translation (NMT). However, few are focusing on the subject of lexical translation consistency. In this paper we apply one transla
Simultaneous translation is a task in which translation begins before the speaker has finished speaking, so it is important to decide when to start the translation process. However, deciding whether to read more input words or start to translate is d
Recent studies emphasize the need of document context in human evaluation of machine translations, but little research has been done on the impact of user interfaces on annotator productivity and the reliability of assessments. In this work, we compa
Although many end-to-end context-aware neural machine translation models have been proposed to incorporate inter-sentential contexts in translation, these models can be trained only in domains where parallel documents with sentential alignments exist