Do you want to publish a course? Click here

ESC: Redesigning WSD with Extractive Sense Comprehension

ESC: إعادة تصميم WSD مع فهم المعنى الاستخراجي

144   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Word Sense Disambiguation (WSD) is a historical NLP task aimed at linking words in contexts to discrete sense inventories and it is usually cast as a multi-label classification task. Recently, several neural approaches have employed sense definitions to better represent word meanings. Yet, these approaches do not observe the input sentence and the sense definition candidates all at once, thus potentially reducing the model performance and generalization power. We cope with this issue by reframing WSD as a span extraction problem --- which we called Extractive Sense Comprehension (ESC) --- and propose ESCHER, a transformer-based neural architecture for this new formulation. By means of an extensive array of experiments, we show that ESC unleashes the full potential of our model, leading it to outdo all of its competitors and to set a new state of the art on the English WSD task. In the few-shot scenario, ESCHER proves to exploit training data efficiently, attaining the same performance as its closest competitor while relying on almost three times fewer annotations. Furthermore, ESCHER can nimbly combine data annotated with senses from different lexical resources, achieving performances that were previously out of everyone's reach. The model along with data is available at https://github.com/SapienzaNLP/esc.



References used
https://aclanthology.org/
rate research

Read More

Interactive machine reading comprehension (iMRC) is machine comprehension tasks where knowledge sources are partially observable. An agent must interact with an environment sequentially to gather necessary knowledge in order to answer a question. We hypothesize that graph representations are good inductive biases, which can serve as an agent's memory mechanism in iMRC tasks. We explore four different categories of graphs that can capture text information at various levels. We describe methods that dynamically build and update these graphs during information gathering, as well as neural models to encode graph representations in RL agents. Extensive experiments on iSQuAD suggest that graph representations can result in significant performance improvements for RL agents.
Sentence extractive summarization shortens a document by selecting sentences for a summary while preserving its important contents. However, constructing a coherent and informative summary is difficult using a pre-trained BERT-based encoder since it is not explicitly trained for representing the information of sentences in a document. We propose a nested tree-based extractive summarization model on RoBERTa (NeRoBERTa), where nested tree structures consist of syntactic and discourse trees in a given document. Experimental results on the CNN/DailyMail dataset showed that NeRoBERTa outperforms baseline models in ROUGE. Human evaluation results also showed that NeRoBERTa achieves significantly better scores than the baselines in terms of coherence and yields comparable scores to the state-of-the-art models.
Abstract We present the Quantized Transformer (QT), an unsupervised system for extractive opinion summarization. QT is inspired by Vector- Quantized Variational Autoencoders, which we repurpose for popularity-driven summarization. It uses a clusterin g interpretation of the quantized space and a novel extraction algorithm to discover popular opinions among hundreds of reviews, a significant step towards opinion summarization of practical scope. In addition, QT enables controllable summarization without further training, by utilizing properties of the quantized space to extract aspect-specific summaries. We also make publicly available Space, a large-scale evaluation benchmark for opinion summarizers, comprising general and aspect-specific summaries for 50 hotels. Experiments demonstrate the promise of our approach, which is validated by human studies where judges showed clear preference for our method over competitive baselines.
Supervised systems have nowadays become the standard recipe for Word Sense Disambiguation (WSD), with Transformer-based language models as their primary ingredient. However, while these systems have certainly attained unprecedented performances, virt ually all of them operate under the constraining assumption that, given a context, each word can be disambiguated individually with no account of the other sense choices. To address this limitation and drop this assumption, we propose CONtinuous SEnse Comprehension (ConSeC), a novel approach to WSD: leveraging a recent re-framing of this task as a text extraction problem, we adapt it to our formulation and introduce a feedback loop strategy that allows the disambiguation of a target word to be conditioned not only on its context but also on the explicit senses assigned to nearby words. We evaluate ConSeC and examine how its components lead it to surpass all its competitors and set a new state of the art on English WSD. We also explore how ConSeC fares in the cross-lingual setting, focusing on 8 languages with various degrees of resource availability, and report significant improvements over prior systems. We release our code at https://github.com/SapienzaNLP/consec.
We introduce a synthetic dialogue generation framework, Velocidapter, which addresses the corpus availability problem for dialogue comprehension. Velocidapter augments datasets by simulating synthetic conversations for a task-oriented dialogue domain , requiring a small amount of bootstrapping work for each new domain. We evaluate the efficacy of our framework on a task-oriented dialogue comprehension dataset, MRCWOZ, which we curate by annotating questions for slots in the restaurant, taxi, and hotel domains of the MultiWOZ 2.2 dataset (Zang et al., 2020). We run experiments within a low-resource setting, where we pretrain a model on SQuAD, fine-tuning it on either a small original data or on the synthetic data generated by our framework. Velocidapter shows significant improvements using both the transformer-based BERTBase and BiDAF as base models. We further show that the framework is easy to use by novice users and conclude that Velocidapter can greatly help training over task-oriented dialogues, especially for low-resourced emerging domains.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا