تحظى بشعبية تطبيق النماذج العصبية القائمة على الرسم البياني في دراسات تحليل المعفاة القائمة على الجانب القائم على الجانب (ABSA) لاستخدام علاقات الكلمة من خلال يوزع التبعية لتسهيل المهمة مع التوجيه الدلالي الأفضل لتحليل السياق والكلمات. ومع ذلك، فإن معظم هذه الدراسات فقط الاستفادة من علاقات التبعية فقط دون النظر لأنواع التبعية، وهي محدودة في عدم وجود آليات فعالة لتمييز العلاقات المهمة وكذلك التعلم من طبقات مختلفة من النماذج القائمة على الرسم البياني. لمعالجة هذه القيود، في هذه الورقة، نقترح نهجا للاستفادة بشكل صريح لأنواع التبعية من أجل ABSA مع الشبكات التنافسية الرسمية من النوع الواجب (T-GCN)، حيث يتم استخدام الاهتمام في T-GCN لتمييز حواف مختلفة (العلاقات) في يقترح الرسم البياني والطبقة اليقظة أن يتعلم بشكل شامل من طبقات مختلفة من T-GCN. يتم إثبات صلاحية وفعالية نهجنا في النتائج التجريبية، حيث يتم تحقيق الأداء الحديثة في مجموعات بيانات قياسية باللغة الإنجليزية. تتم إجراء مزيد من التجارب لتحليل مساهمات كل مكون في نهجنا وتوضيح كيفية مساعدة الطبقات المختلفة في T-GCN ABSA مع التحليل الكمي والنوعي.
It is popular that neural graph-based models are applied in existing aspect-based sentiment analysis (ABSA) studies for utilizing word relations through dependency parses to facilitate the task with better semantic guidance for analyzing context and aspect words. However, most of these studies only leverage dependency relations without considering their dependency types, and are limited in lacking efficient mechanisms to distinguish the important relations as well as learn from different layers of graph based models. To address such limitations, in this paper, we propose an approach to explicitly utilize dependency types for ABSA with type-aware graph convolutional networks (T-GCN), where attention is used in T-GCN to distinguish different edges (relations) in the graph and attentive layer ensemble is proposed to comprehensively learn from different layers of T-GCN. The validity and effectiveness of our approach are demonstrated in the experimental results, where state-of-the-art performance is achieved on six English benchmark datasets. Further experiments are conducted to analyze the contributions of each component in our approach and illustrate how different layers in T-GCN help ABSA with quantitative and qualitative analysis.
References used
https://aclanthology.org/
Recent work on aspect-level sentiment classification has employed Graph Convolutional Networks (GCN) over dependency trees to learn interactions between aspect terms and opinion words. In some cases, the corresponding opinion words for an aspect term
Aspect-based sentiment analysis (ABSA) predicts the sentiment polarity towards a particular aspect term in a sentence, which is an important task in real-world applications. To perform ABSA, the trained model is required to have a good understanding
Aspect-based sentiment analysis (ABSA) typically focuses on extracting aspects and predicting their sentiments on individual sentences such as customer reviews. Recently, another kind of opinion sharing platform, namely question answering (QA) forum,
The pivot for the unified Aspect-based Sentiment Analysis (ABSA) is to couple aspect terms with their corresponding opinion terms, which might further derive easier sentiment predictions. In this paper, we investigate the unified ABSA task from the p
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches