Do you want to publish a course? Click here

Aspect-based Sentiment Analysis with Type-aware Graph Convolutional Networks and Layer Ensemble

تحليل المعنويات المستندة إلى جانب الجسدي مع شبكات تشكيلة ناشئة من نوعها

357   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

It is popular that neural graph-based models are applied in existing aspect-based sentiment analysis (ABSA) studies for utilizing word relations through dependency parses to facilitate the task with better semantic guidance for analyzing context and aspect words. However, most of these studies only leverage dependency relations without considering their dependency types, and are limited in lacking efficient mechanisms to distinguish the important relations as well as learn from different layers of graph based models. To address such limitations, in this paper, we propose an approach to explicitly utilize dependency types for ABSA with type-aware graph convolutional networks (T-GCN), where attention is used in T-GCN to distinguish different edges (relations) in the graph and attentive layer ensemble is proposed to comprehensively learn from different layers of T-GCN. The validity and effectiveness of our approach are demonstrated in the experimental results, where state-of-the-art performance is achieved on six English benchmark datasets. Further experiments are conducted to analyze the contributions of each component in our approach and illustrate how different layers in T-GCN help ABSA with quantitative and qualitative analysis.



References used
https://aclanthology.org/
rate research

Read More

Recent work on aspect-level sentiment classification has employed Graph Convolutional Networks (GCN) over dependency trees to learn interactions between aspect terms and opinion words. In some cases, the corresponding opinion words for an aspect term cannot be reached within two hops on dependency trees, which requires more GCN layers to model. However, GCNs often achieve the best performance with two layers, and deeper GCNs do not bring any additional gain. Therefore, we design a novel selective attention based GCN model. On one hand, the proposed model enables the direct interaction between aspect terms and context words via the self-attention operation without the distance limitation on dependency trees. On the other hand, a top-k selection procedure is designed to locate opinion words by selecting k context words with the highest attention scores. We conduct experiments on several commonly used benchmark datasets and the results show that our proposed SA-GCN outperforms strong baseline models.
Aspect-based sentiment analysis (ABSA) predicts the sentiment polarity towards a particular aspect term in a sentence, which is an important task in real-world applications. To perform ABSA, the trained model is required to have a good understanding of the contextual information, especially the particular patterns that suggest the sentiment polarity. However, these patterns typically vary in different sentences, especially when the sentences come from different sources (domains), which makes ABSA still very challenging. Although combining labeled data across different sources (domains) is a promising solution to address the challenge, in practical applications, these labeled data are usually stored at different locations and might be inaccessible to each other due to privacy or legal concerns (e.g., the data are owned by different companies). To address this issue and make the best use of all labeled data, we propose a novel ABSA model with federated learning (FL) adopted to overcome the data isolation limitations and incorporate topic memory (TM) proposed to take the cases of data from diverse sources (domains) into consideration. Particularly, TM aims to identify different isolated data sources due to data inaccessibility by providing useful categorical information for localized predictions. Experimental results on a simulated environment for FL with three nodes demonstrate the effectiveness of our approach, where TM-FL outperforms different baselines including some well-designed FL frameworks.
Aspect-based sentiment analysis (ABSA) typically focuses on extracting aspects and predicting their sentiments on individual sentences such as customer reviews. Recently, another kind of opinion sharing platform, namely question answering (QA) forum, has received increasing popularity, which accumulates a large number of user opinions towards various aspects. This motivates us to investigate the task of ABSA on QA forums (ABSA-QA), aiming to jointly detect the discussed aspects and their sentiment polarities for a given QA pair. Unlike review sentences, a QA pair is composed of two parallel sentences, which requires interaction modeling to align the aspect mentioned in the question and the associated opinion clues in the answer. To this end, we propose a model with a specific design of cross-sentence aspect-opinion interaction modeling to address this task. The proposed method is evaluated on three real-world datasets and the results show that our model outperforms several strong baselines adopted from related state-of-the-art models.
The pivot for the unified Aspect-based Sentiment Analysis (ABSA) is to couple aspect terms with their corresponding opinion terms, which might further derive easier sentiment predictions. In this paper, we investigate the unified ABSA task from the p erspective of Machine Reading Comprehension (MRC) by observing that the aspect and the opinion terms can serve as the query and answer in MRC interchangeably. We propose a new paradigm named Role Flipped Machine Reading Comprehension (RF-MRC) to resolve. At its heart, the predicted results of either the Aspect Term Extraction (ATE) or the Opinion Terms Extraction (OTE) are regarded as the queries, respectively, and the matched opinion or aspect terms are considered as answers. The queries and answers can be flipped for multi-hop detection. Finally, every matched aspect-opinion pair is predicted by the sentiment classifier. RF-MRC can solve the ABSA task without any additional data annotation or transformation. Experiments on three widely used benchmarks and a challenging dataset demonstrate the superiority of the proposed framework.
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches do not well exploit the interactive relations among three subtasks and do not pertinently leverage the easily available document-level labeled domain/sentiment knowledge, which restricts their performances. To address these issues, we propose a novel Iterative Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA. For one thing, through the interactive correlations between the ABSA subtasks, our IMKTN transfers the task-specific knowledge from any two of the three subtasks to another one at the token level by utilizing a well-designed routing algorithm, that is, any two of the three subtasks will help the third one. For another, our IMKTN pertinently transfers the document-level knowledge, i.e., domain-specific and sentiment-related knowledge, to the aspect-level subtasks to further enhance the corresponding performance. Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of our approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا