Do you want to publish a course? Click here

Few-shot Intent Classification and Slot Filling with Retrieved Examples

عدد قليل من تصنيف القوى وملء الفتحة مع أمثلة استرجاع

285   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Few-shot learning arises in important practical scenarios, such as when a natural language understanding system needs to learn new semantic labels for an emerging, resource-scarce domain. In this paper, we explore retrieval-based methods for intent classification and slot filling tasks in few-shot settings. Retrieval-based methods make predictions based on labeled examples in the retrieval index that are similar to the input, and thus can adapt to new domains simply by changing the index without having to retrain the model. However, it is non-trivial to apply such methods on tasks with a complex label space like slot filling. To this end, we propose a span-level retrieval method that learns similar contextualized representations for spans with the same label via a novel batch-softmax objective. At inference time, we use the labels of the retrieved spans to construct the final structure with the highest aggregated score. Our method outperforms previous systems in various few-shot settings on the CLINC and SNIPS benchmarks.



References used
https://aclanthology.org/
rate research

Read More

Intent classification (IC) and slot filling (SF) are critical building blocks in task-oriented dialogue systems. These two tasks are closely-related and can flourish each other. Since only a few utterances can be utilized for identifying fast-emergin g new intents and slots, data scarcity issue often occurs when implementing IC and SF. However, few IC/SF models perform well when the number of training samples per class is quite small. In this paper, we propose a novel explicit-joint and supervised-contrastive learning framework for few-shot intent classification and slot filling. Its highlights are as follows. (i) The model extracts intent and slot representations via bidirectional interactions, and extends prototypical network to achieve explicit-joint learning, which guarantees that IC and SF tasks can mutually reinforce each other. (ii) The model integrates with supervised contrastive learning, which ensures that samples from same class are pulled together and samples from different classes are pushed apart. In addition, the model follows a not common but practical way to construct the episode, which gets rid of the traditional setting with fixed way and shot, and allows for unbalanced datasets. Extensive experiments on three public datasets show that our model can achieve promising performance.
This paper investigates the effectiveness of pre-training for few-shot intent classification. While existing paradigms commonly further pre-train language models such as BERT on a vast amount of unlabeled corpus, we find it highly effective and effic ient to simply fine-tune BERT with a small set of labeled utterances from public datasets. Specifically, fine-tuning BERT with roughly 1,000 labeled data yields a pre-trained model -- IntentBERT, which can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains with very different semantics. The high effectiveness of IntentBERT confirms the feasibility and practicality of few-shot intent detection, and its high generalization ability across different domains suggests that intent classification tasks may share a similar underlying structure, which can be efficiently learned from a small set of labeled data. The source code can be found at https://github.com/hdzhang-code/IntentBERT.
How to effectively adapt neural machine translation (NMT) models according to emerging cases without retraining? Despite the great success of neural machine translation, updating the deployed models online remains a challenge. Existing non-parametric approaches that retrieve similar examples from a database to guide the translation process are promising but are prone to overfit the retrieved examples. However, non-parametric methods are prone to overfit the retrieved examples. In this work, we propose to learn Kernel-Smoothed Translation with Example Retrieval (KSTER), an effective approach to adapt neural machine translation models online. Experiments on domain adaptation and multi-domain machine translation datasets show that even without expensive retraining, KSTER is able to achieve improvement of 1.1 to 1.5 BLEU scores over the best existing online adaptation methods. The code and trained models are released at https://github.com/jiangqn/KSTER.
Natural Language Processing (NLP) is increasingly relying on general end-to-end systems that need to handle many different linguistic phenomena and nuances. For example, a Natural Language Inference (NLI) system has to recognize sentiment, handle num bers, perform coreference, etc. Our solutions to complex problems are still far from perfect, so it is important to create systems that can learn to correct mistakes quickly, incrementally, and with little training data. In this work, we propose a continual few-shot learning (CFL) task, in which a system is challenged with a difficult phenomenon and asked to learn to correct mistakes with only a few (10 to 15) training examples. To this end, we first create benchmarks based on previously annotated data: two NLI (ANLI and SNLI) and one sentiment analysis (IMDB) datasets. Next, we present various baselines from diverse paradigms (e.g., memory-aware synapses and Prototypical networks) and compare them on few-shot learning and continual few-shot learning setups. Our contributions are in creating a benchmark suite and evaluation protocol for continual few-shot learning on the text classification tasks, and making several interesting observations on the behavior of similarity-based methods. We hope that our work serves as a useful starting point for future work on this important topic.
In this paper, we study the utilization of pre-trained language models to enable few-shotNatural Language Generation (NLG) in task-oriented dialog systems. We introduce a system consisting of iterative self-training and an extensible mini-template fr amework that textualizes the structured input data into semi-natural text to fully take advantage of pre-trained language models. We compare var-ious representations of NLG models' input and output and show that transforming the input and output to be similar to what the language model has seen before during pre-training improves the model's few-shot performance substantially. We show that neural mod-els can be trained with as few as 300 annotated examples while providing high fidelity, considerably lowering the resource requirements for standing up a new domain or language.This level of data efficiency removes the need for crowd-sourced data collection resulting in higher quality data annotated by expert linguists. In addition, model maintenance and debugging processes will improve in this few-shot setting. Finally, we explore distillation and using a caching system to satisfy latency requirements of real-world systems.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا