نقوم بتقديم Gerdalir، مجموعة بيانات ألمانية لاسترجاع المعلومات القانونية بناء على وثائق الحالة من منصة المعلومات القانونية المفتوحة المفتوحة.تتكون DataSet من استفسارات 123 ألفا، يتم تصنيف كل منها وثيقة واحدة ذات صلة على الأقل في مجموعة من وثائق الحالة 131K.نقوم بإجراء العديد من التجارب الأساسية بما في ذلك BM25 وإعادة الرحالة العصبية لحديمع DataSet لدينا، نهدف إلى توفير معيار موحد لرجال الألمانية وترويج البحث المفتوح في هذا المجال.أبعد من ذلك، تضم مجموعة بياناتنا بيانات تدريبية كافية لاستخدامها كملقمة من النماذج في اللغة الألمانية أو اللغوية متعددة اللغات.
We present GerDaLIR, a German Dataset for Legal Information Retrieval based on case documents from the open legal information platform Open Legal Data. The dataset consists of 123K queries, each labelled with at least one relevant document in a collection of 131K case documents. We conduct several baseline experiments including BM25 and a state-of-the-art neural re-ranker. With our dataset, we aim to provide a standardized benchmark for German LIR and promote open research in this area. Beyond that, our dataset comprises sufficient training data to be used as a downstream task for German or multilingual language models.
References used
https://aclanthology.org/
The task of document-level text simplification is very similar to summarization with the additional difficulty of reducing complexity. We introduce a newly collected data set of German texts, collected from the Swiss news magazine 20 Minuten (20 Minu
One of the challenges in information retrieval (IR) is the vocabulary mismatch problem, which happens when the terms between queries and documents are lexically different but semantically similar. While recent work has proposed to expand the queries
As the world continues to fight the COVID-19 pandemic, it is simultaneously fighting an infodemic' -- a flood of disinformation and spread of conspiracy theories leading to health threats and the division of society. To combat this infodemic, there i
We introduce MULTI-EURLEX, a new multilingual dataset for topic classification of legal documents. The dataset comprises 65k European Union (EU) laws, officially translated in 23 languages, annotated with multiple labels from the EUROVOC taxonomy. We
Precisely defining the terminology is the first step in scientific communication. Developing neural text generation models for definition generation can circumvent the labor-intensity curation, further accelerating scientific discovery. Unfortunately