في أنظمة الحوار الموجهة نحو المهام، تميل أساليب تتبع حكومية الحوار الحديثة إلى أداء جيل تمرير واحد من حالة الحوار بناء على حالة الحوار السابقة. أخطاء هذه النماذج التي تم إجراؤها بدورها الحالي عرضة للنقل إلى المنعطف التالي، مما تسبب في نشر الأخطاء. في هذه الورقة، نقترح إنشاء جيل محدد للجانبين لتتبع حالة الحوار (AG-DST)، والذي يحتوي على عملية توليد تمريرة اثنين: (1) إنشاء حالة حوار بدائية تستند إلى حوار المنعطف الحالي ودولة الحوار السابقة و (2) تعديل حالة الحوار البدائي من المرور الأول. مع مرور الجيل المعدل الإضافي، يتم تكمل نموذجنا لمعرفة المزيد من تعقب حالة الحوار القوية من خلال تعديل الأخطاء التي لا تزال موجودة في حالة الحوار البدائية، والتي تلعب دور إعادة النظر في عملية الفحص المزدوج وتغطي بعد انتشار الأخطاء غير الضرورية. تظهر النتائج التجريبية أن AG-DST تتفوق بشكل كبير على الأعمال السابقة في مجموعة بيانات DST النشطة (MultiWoz 2.2 و Woz 2.0)، وتحقيق عروض جديدة من بين الفنون.
In task-oriented dialogue systems, recent dialogue state tracking methods tend to perform one-pass generation of the dialogue state based on the previous dialogue state. The mistakes of these models made at the current turn are prone to be carried over to the next turn, causing error propagation. In this paper, we propose a novel Amendable Generation for Dialogue State Tracking (AG-DST), which contains a two-pass generation process: (1) generating a primitive dialogue state based on the dialogue of the current turn and the previous dialogue state, and (2) amending the primitive dialogue state from the first pass. With the additional amending generation pass, our model is tasked to learn more robust dialogue state tracking by amending the errors that still exist in the primitive dialogue state, which plays the role of reviser in the double-checking process and alleviates unnecessary error propagation. Experimental results show that AG-DST significantly outperforms previous works in two active DST datasets (MultiWOZ 2.2 and WOZ 2.0), achieving new state-of-the-art performances.
References used
https://aclanthology.org/
Dialogue State Tracking is central to multi-domain task-oriented dialogue systems, responsible for extracting information from user utterances. We present a novel hybrid architecture that augments GPT-2 with representations derived from Graph Attenti
Dialogue State Tracking (DST) is a sub-task of task-based dialogue systems where the user intention is tracked through a set of (domain, slot, slot-value) triplets. Existing DST models can be difficult to extend for new datasets with larger domains/s
Abstract Tracking dialogue states to better interpret user goals and feed downstream policy learning is a bottleneck in dialogue management. Common practice has been to treat it as a problem of classifying dialogue content into a set of pre-defined s
Sequence-to-sequence models have been applied to a wide variety of NLP tasks, but how to properly use them for dialogue state tracking has not been systematically investigated. In this paper, we study this problem from the perspectives of pre-trainin
Recently, the focus of dialogue state tracking has expanded from single domain to multiple domains. The task is characterized by the shared slots between domains. As the scenario gets more complex, the out-of-vocabulary problem also becomes severer.