Do you want to publish a course? Click here

A Grounded Well-being Conversational Agent with Multiple Interaction Modes: Preliminary Results

وكيل محادثة محادثة متأثرة مع أوضاع متعددة التفاعل: النتائج الأولية

351   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Technologies for enhancing well-being, healthcare vigilance and monitoring are on the rise. However, despite patient interest, such technologies suffer from low adoption. One hypothesis for this limited adoption is loss of human interaction that is central to doctor-patient encounters. In this paper we seek to address this limitation via a conversational agent that adopts one aspect of in-person doctor-patient interactions: A human avatar to facilitate medical grounded question answering. This is akin to the in-person scenario where the doctor may point to the human body or the patient may point to their own body to express their conditions. Additionally, our agent has multiple interaction modes, that may give more options for the patient to use the agent, not just for medical question answering, but also to engage in conversations about general topics and current events. Both the avatar, and the multiple interaction modes could help improve adherence. We present a high level overview of the design of our agent, Marie Bot Wellbeing. We also report implementation details of our early prototype , and present preliminary results.



References used
https://aclanthology.org/
rate research

Read More

Conversational Agents (CAs) can be a proxy for disseminating information and providing support to the public, especially in times of crisis. CAs can scale to reach larger numbers of end-users than human operators, while they can offer information int eractively and engagingly. In this work, we present Theano, a Greek-speaking virtual assistant for COVID-19. Theano presents users with COVID-19 statistics and facts and informs users about the best health practices as well as the latest COVID-19 related guidelines. Additionally, Theano provides support to end-users by helping them self-assess their symptoms and redirecting them to first-line health workers. The relevant, localized information that Theano provides, makes it a valuable tool for combating COVID-19 in Greece. Theano has already conversed with different users in more than 170 different conversations through a web interface as a chatbot and over the phone as a voice bot.
Generating informative and appropriate responses is challenging but important for building human-like dialogue systems. Although various knowledge-grounded conversation models have been proposed, these models have limitations in utilizing knowledge t hat infrequently occurs in the training data, not to mention integrating unseen knowledge into conversation generation. In this paper, we propose an Entity-Agnostic Representation Learning (EARL) method to introduce knowledge graphs to informative conversation generation. Unlike traditional approaches that parameterize the specific representation for each entity, EARL utilizes the context of conversations and the relational structure of knowledge graphs to learn the category representation for entities, which is generalized to incorporating unseen entities in knowledge graphs into conversation generation. Automatic and manual evaluations demonstrate that our model can generate more informative, coherent, and natural responses than baseline models.
Abstractive summarization quality had large improvements since recent language pretraining techniques. However, currently there is a lack of datasets for the growing needs of conversation summarization applications. Thus we collected ForumSum, a dive rse and high-quality conversation summarization dataset with human written summaries. The conversations in ForumSum dataset are collected from a wide variety of internet forums. To make the dataset easily expandable, we also release the process of dataset creation. Our experiments show that models trained on ForumSum have better zero-shot and few-shot transferability to other datasets than the existing large chat summarization dataset SAMSum. We also show that using a conversational corpus for pre-training improves the quality of the chat summarization model.
We present on-going work of evaluating the, to our knowledge, first large generative language model trained to converse in Swedish, using data from the online discussion forum Flashback. We conduct a human evaluation pilot study that indicates the mo del is often able to respond to conversations in both a human-like and informative manner, on a diverse set of topics. While data from online forums can be useful to build conversational systems, we reflect on the negative consequences that incautious application might have, and the need for taking active measures to safeguard against them.
In recent years, remote digital healthcare using online chats has gained momentum, especially in the Global South. Though prior work has studied interaction patterns in online (health) forums, such as TalkLife, Reddit and Facebook, there has been lim ited work in understanding interactions in small, close-knit community of instant messengers. In this paper, we propose a linguistic annotation framework to facilitate analysis of health-focused WhatsApp groups. The primary aim of the framework is to understand interpersonal relationships among peer supporters in order to help develop NLP solutions for remote patient care and reduce burden of overworked healthcare providers. Our framework consists of fine-grained peer support categorization and message-level sentiment tagging. Additionally, due to the prevalence of code-mixing in such groups, we incorporate word-level language annotations. We use the proposed framework to study two WhatsApp groups in Kenya for youth living with HIV, facilitated by a healthcare provider.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا