في ورقة الموقف هذه، نقدم جدول أعمال وأفكار بحثية لتسهيل التعرض للنقاط المتنوعة في توصية الأخبار. التوصية الأخبار من وجهات النظر المتنوعة مهمة لمنع تأثيرات فقاعة المرشح المحتملة في الاستهلاك الأخبار، وتحفيز نقاش صحي ديمقراطي. لحساب التعقيد الذي يتصاعد للبشر كمواطنين في الديمقراطية، نتوقع (من بين أمور أخرى) اختلافات على المستوى الفردي في قبول التنوع. نقوم بتوصيل هذه الفكرة بالتقنيات في معالجة اللغة الطبيعية، حيث تتيح لنا نماذج اللغة التوزيعية لوضع مستخدمين مختلفين ومقالات إخبارية في مساحة متعددة الأبعاد بناء على المحتوى الدلالي، حيث يتم تشغيل التنوع كمسافة وتباين. وبهذه الطريقة، يمكننا تصميم خطوط العرض الفردية من التنوع "بالنسبة للمستخدمين المختلفين، وبالتالي تخصيص تنوع وجهة نظر لدعم مناقشة عامة صحية. بالإضافة إلى ذلك، نحدد القضايا التقنية والأخلاقية والمفاهيمية المتعلقة بأفكارنا المقدمة. وصفنا يصف كيف يمكن ل NLP لعب دورا رئيسيا في تنويع توصيات الأخبار.
In this position paper, we present a research agenda and ideas for facilitating exposure to diverse viewpoints in news recommendation. Recommending news from diverse viewpoints is important to prevent potential filter bubble effects in news consumption, and stimulate a healthy democratic debate.To account for the complexity that is inherent to humans as citizens in a democracy, we anticipate (among others) individual-level differences in acceptance of diversity. We connect this idea to techniques in Natural Language Processing, where distributional language models would allow us to place different users and news articles in a multidimensional space based on semantic content, where diversity is operationalized as distance and variance. In this way, we can model individual latitudes of diversity'' for different users, and thus personalize viewpoint diversity in support of a healthy public debate. In addition, we identify technical, ethical and conceptual issues related to our presented ideas. Our investigation describes how NLP can play a central role in diversifying news recommendations.
References used
https://aclanthology.org/
Discourse parsers recognize the intentional and inferential relationships that organize extended texts. They have had a great influence on a variety of NLP tasks as well as theoretical studies in linguistics and cognitive science. However it is often
Dialogue summarization is a long-standing task in the field of NLP, and several data sets with dialogues and associated human-written summaries of different styles exist. However, it is unclear for which type of dialogue which type of summary is most
Recent Deep Learning (DL) summarization models greatly outperform traditional summarization methodologies, generating high-quality summaries. Despite their success, there are still important open issues, such as the limited engagement and trust of us
Natural Language Processing (NLP) systems are at the heart of many critical automated decision-making systems making crucial recommendations about our future world. Gender bias in NLP has been well studied in English, but has been less studied in oth
Statistical approaches to processing natural language text have become dominant in recent years. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations.